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ANNOTATION

The problems are examined of plotting, mathematically
processing, and determining the accuracy of three-dimensional
geodetic nets compiled from synchronous observations of artificial
earth satellites. The first part (Chapters I - III) gives brief
historical information, and describes the types of geodetic
satellites and equipment used for observations. An examination
is made of the coordinate systems and sequence of coordinate
transformations for reducing all measured values to one system,
the basic moments and the order of preliminary (astrometric)
processing of artificial earth satellite photographs, as well

as laser and doppler measurements.

The second part (Chapters IV - V) describes the principal
methods of space triangulation from photographic, laser, and
doppler measurements, and from different combinations. This
section is primarily devoted to problems of adjusting space
triangulation. The adjusting methods are divided into two
groups: the first group includes those in which coordinates
of points on the earth and on the satellites are determined
concurrently, and the other — only the coordinates of points
on the Earth. Since many elements of space triangulation are
functions of the measurement results, the generalized principle

of least squares is used for their adjustment.

A comparative summary of different methods of adjustihg

space triangulation is given in conclusion.

The third part (Chapters VI - VII) examines the problems of

an apriori determination of the accuracy of elementary figures,

iii



series, and continuous nets of space triangulation. The optimal
figure forms are studied, and some considerations on plotting
space triangulation are presented.

The majority of the classifications in the second and third
parts have been developed by the authors, and are first presented
in systematic form.

The book 1s designed for scientists and engineers studying
space geodesy, and also students in advanced courses and candi-

dates for degrees in geodesy.

There are 6 tables, 80 figures, and 75 references.
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PLOTTING, ADJUSTMENT AND ESTIMATION OF THE ACCURACY
OF SPACE GEODETIC NETWORKS

Ye. G. Boyko, B. M. Klenitskiy,
I. M. Landis and G. A. Ustinov

Introduction /3%

The main problems of modern geodesy are determination of the
position of points of the Earth's surface in a single coordinate
system and the characteristics of the Earth's gravitational field. -
Solution of these problems within the framework of classical
geodesy 1is characterized by the use of two three-dimensional
coordinate systems to determine the position of the same polnt.

The position of a point is calculated on an elllpsoid, and
the height of this same point — with respect to a quasi-geoild.
This duality 1s aggravated even more by the fact that every
couhtry (or group of countries) has its own reference ellipsoid,
i.e., 1t establishes a special coordinate system even to calcu-
late a systematic system of points. This is how the large number
of national coordinate systems developed and, as a result, the
problem of establishing relationships between them.

Up to the second half of the 1950's, the main source of
information.to solve geodetic problems was the results of obser-
vations carried out on the Earth's surface, and of the sighting
targets located on it. This naturally limited the possibilities
of studying the Earth's shape by geometric methods primarily due

¥Numbers in the margin indicate pagination in the
original foreign text.



to the relatively small lengths of the sides, providing visibility
of the sighting target. Because of this, 1t was impossible to

" relate the continuous triangulation net of a territory,'divided by
large water expanses, to obtain sufficiently large arcs of degree
measurements and to create a single coordinate system for the
entire Earth. ' :

Solution of this problem is possible in principle on the
basis of using gravimetric data. As a result, local systems will
be reduced to a single system with the origin at the center of
the Earth's mass. However, a detailed study of the Earth's
gravitational field entails a number of difficulties and, pri-
marily, the necessity of measuring gravity at sea. 1In connection
with this, the problem obtains only an approximate solution.

A complex solution of basic geodetlic problems would be possible
by observations of space objects, moving in the Earth's gravita-
tional field. Such objects, being high-~altitude sighting targets,
would expand the possibilities of the geometric method considerably.
Study of the motion of these objects in the Earth's gravitational
field would lead to a determination of its characteristics.

Attempts to use the natural satellite of the Earth — the /4
Moon — as such an object led to the development of a new branch
of science — space (satellite) geodesy. However, observations
of the Moon as an object for space geodesy had no important
practical significance.

The appearance of artificial Earth satellites (AES) contri-
buted to the development of space geodesy and led to important
results within short periods both in determination of the loca-
tion of points 1in a unified global system and in a study of the
Earth's gravitational field.



Two main trends of space geodesy have now quite clearly
formed. Thg first trend includes a group of methods for the
jqint determination of the Earth's geophysical parameters and
the coordinates of points. This section is often called the
dynamic method. A vast literature is devoted to a description
of this method. It is more completely and thoroughly outlined
in the investigation of W. Kaula "Satellite Geodesy," written
in 1966 and published in 1970 in the Russian language by the
"Mir" Publishing House.

'Construction of threé—dimensional geodetic nets with the
ald of synchronous observations of AES comprises the second
trend, which has been calléd the geometric method, or space
triahgulation. This method cannot be considered as a simple
improvement of known methods of classical geodesy, leading only
to an increase in the length of the sides of geodetic nets.

A number of characteristics of measuring information and its .
maﬁhemétical treatment generated a larée number of new problems,
not chéracteristic of the methods of ordinary. geodesy.

In connection with this, numerous investigations have
appeared both in.domestic and in the foreign literature, devoted
to problems of applylng different systems of coordinates, to a
consideration of-optimum plotting of space triangulation and
its preliminary processing and adjustment.

An attempt has been made in the present ;nvestigation to
systematically outline the problems of a priori evaluation of
the accuracy, projection and mathematical treatment of measure-
menﬁs;in space geodetilic nets, created by synchronous observations
of AES. Taking into account the great importance of these prob-
1em§ fgr §olution of scientific and technical problems, the
authors attempted, along with the necessary theoretical justi-
fication, to reduce the final results to a form convenient for
practical use. 3



In conclusion, we note that space geodesy, like any new
branch of science, is developing very rapidly, and its individual
disciplines and the relationships between them have not yet been
settled and have not yet passed the necessary test of time. The
authors well understand that there are many sections and problems
in the book, exposition of which could be improved; therefore,
they will gratefully aécept all critical comments of readers.



CHAPTER 1

.DEVELOPMENT OF METHODS OF GEODETIC UTILIZATION
OF ARTIFICIAL EARTH SATELLITES

l. Historical Statement

Use of the Moon

Long before the appearance of artificial Earth satellites
(AES), the possibilities of geodetic utilization of the obser-
vations of space objects, having a discernible diurnal parallax,
were evaluated for their merit. Prior to the launch of the
first AES, the only such method was the Earth's natural satellite
— the Moon. Scilentists attempted to use observations of it for

geodetic purposes for about 200 years.

The diurnal parallax of the Moon does not exceed 61'32".
Consequently, the maximum parallactic shift of the Moon with
respect to the stars, even when it is observed on the horizon
at points opposite the Earth's surface, will comprise a little
more than 2°. As a result, when purely geometric methods of
transmission of coordinates between points of the Earth's surface
using observations of the Moon are utilized, satisfactory geo~
metric plots cannot be obtained.

It is easy to calculate that, even if the geocentric motion
of the Moon is known with high accuracy, and the bearings toward
the center of the Moon are measured with an error of 0.02",
the position of a point on the Earth cannot be calculated more
precisely than 100 m.



Therefore, it is quite natural that, in turning to the
problem of geodetic utilization of the Mobn, scientists were
faced primarily with the problem of developing those methods and
equipment for observation which would provide the highest accuracy.
The problem of geodetic treatment of observations has moved aside
to a secondary position,

Phenomena of solar eclipses and osculations of stars by the
Moon are employed in visual observations of the Moon. The essence
of observations in this case reduced to fixation of the moments
of contact of the edges of the visible disks of the Moon and Sun
or moments of osculation of the stars by the Moon.' The measure-
ment accuracy is affected by a 1argé number of factors, primarily
by the unevenness of the visible edge of the Moon.

Special maps of lunar profiles have been created to take
into account corrections for "lunar topography." Such maps,
for example, were created by Hain in 1914 and by the Tartu /6
Observatory in 1952. The accuracy with which the position of
an individual point of the lunar limit is calculated by these
maps 1s apparently no greater than #0.1" [5], which naturally
does not satisfy the requirements of geodetic measurement. Lunar
profile maps, created at the Observatory imeni Engel'gardt in
Kazan' in 1958 [39] and at the Naval Observatory in Washington
in 1963, are possibly somewhat more accurate. However, a con-
siderable increase in accuracy may be expected only from a
direct study of the Moon by photography of its surface from an
artificial lunar satellite and by making direct geodetic measure-
ments both between points of the Earth, Moon and spacecraft, and
on the lunar surface.



Besides the creation of lunar profile maps, special methods
and equipment for recording the moments of observation have been
proposed which raise the accuracy of results. These are, for
example, the method of observation at equal position angles [63]
and photoelectric recording of osculations [75].

Methods of obtaining topocentric directions toward the Moon
by direct photography of it on a background of the stellar sky
are well known. Attempts to obtain photographic images of celes-
tial objects were undertaken soon after discovery of the photo-

graphic process.

It is interesting to note that the first celestial object
recorded on photographs was the Moon [6]. The first good photo-
graph of the Moon was obtained by Draper in 1840. During the
period 1911 - 1917, King obtalned a bearing toward the Moon with
an error of m, = +1". During the period 1920 - 1928, Boehm,
using Hain's photographs, raised the accuracy of determining the
bearing toward the Moon to #0.5 - 0.7". The main difficulty in
obtaining good images of the stars and Moon on a single negative
occurred due to the comparatively high speed of motion of the
Moon with respect to the stars and its great brightness. These
difficulties were overcome as a result of creating special lunar
cameras [5, 38], in which the motion of the Moon and attenuation
of its brightness (a dark plane-parallel Markowitz plate) were
compensated for, and exposures of different length (Mikhaylov's
"shutter") were made for the Moon and stars. Observations made
by Markowitz during the International Geophysical Year (IGY)
determined the central position of the visible disk of the Moon
with respect to reference stars on a photographic plate with an
accuracy of *0.15". Markowitz concludes from this that multiple
photographic observations of the Moon determine the geocentric



position of the observation point with an accuracy of %30 - 40 m
[61]. Apparently, this is the 1limit of accuracy, the approxima-
tion of which is theoretically possible by photographic observa-
tions of the Moon.

Despite the great success in improving methods of geodetic
use of the Moon, creation of speclal equipment and methods of
observation, these investigations did not go beyond the limits
of individual experiments. A good 1llustration of this is two
predictions. The first was made in 1768 by Johann Albert Euler,
the son of the famous Leonard Euler. Consldering the possibility /7
of deriving a meridian ellipse from observations of the Moon from
a number of points located on a single meridian, he wrote:

" . . . If the Moon were closer to the Earth or there were other
bodies close to the Earth which could be observed from different
points of a single meridian, this method of determining the shape
of the Earth would be simpler and more convenlent than a method
based on degree measurements in triangles" (Snellius's triangu-
lation method). The second proposition belongs to the renowned
Soviet scientist, academician A. A. Mikhaylov, and was made in
1957 literally on the eve of the launch of the first artificilal
satellite in the USSR: "The distance of the Moon from the Earth
and the smallness of the lunar parallax caused by this, make
geodetic use of the Moon a difficult if not a thankless task." And
further: '"Perhaps, in the future the Moon will be replaced by
an artificial satellite, moving near the Earth, the observation
of which will solve geodetic problems more accurately" [38].

Vaisdla's Method

In 1945, the Finnish scientist Vidisdla [70] proposed calcu-
lating the direction of a chord, connecting two ground points,
by simultaneous observation of flares fired from aircraft or
balloons. In this case, unlike the previous triangulation with
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high-altitude moving sighting targets, it was proposed to
photograph the flare on the background of the stellar sky rather
than to use goniometric inétruments to measure the bearings
toward the flare. Then the direction toward the flare could be
calculated by the camera method after photographic measurement
of the position of the flare with respect to stars with known
coordinates.

Experimental calculations of the direction of the chord
between two points (at Helsinki and near Turku) were carried out
in 1946. Mégnesium flares fired from a balloon were photographed.
This first experiment may be considered the beginning of three-
dimensional astral triangulation, but this method has not found
extensive use, because the altitudes to which the sighting tar-
gets were raised were not adequate for increasing the length of
the triangulation sides.

Space Geodesy

Only after the launch of the first artificial Earth satellite
in the USSR on 4 October 1957 did the real possibility of con-
structing three-dimensional triangulation with large sides appear.
The first practical experiments carried out both in the USSR and
abroad [53, 72] indicated the great promise and possibility of
high accuracy of the new method.

Construction of the first experimental network of AES
observation points for geodetic purposes was begun by the
Smithsonian Astrophysical Observatory (United States) in 1959.
It included 12 points equipped with equipment to photograph AES
on the background of the stellar sky. Investigations on the
observation of AES for geodetic purposes have been conducted in
the USSR and the socialist countries since 1661 upon the



initiative of scientists of Pulkova Observatory and of the /8
Astronomical Council of the Academy of Sciences of the USSR.
Photographic observations of different AES have already yilelded
extensive material which leads to the construction of a geodetic
net, encompassing a considerable area [53]. These investigations
are being continued successfully even now in a program of inter-
national cooperation.

With the development of space geodetic nets, photographic
observations have begun to be supplemented by laser and radio-
technical measurements, independently of weather conditions, which
yleld the distances, radial components of AES speed and differ-
ences of the distances from the observation point to the AES
positions with high accuracy.

2. Prlincipal Fundamentals of Methods of Using AES
Observations for Geodetlc Purposes

Three vectors (Figure 1) are connected by the relation
;K'=;0+Ec1(' (2.1)

Essentlally, Equation (2.1) 1s the basic equation of space
geodesy [15].

If point C corresponds to the AES observation point and
point K corresponds to the position of the satellite, radius

vector ;C determines the position of the observation poiht,
radius vector ;K determines the position of the satellite, and
vector BCK determines the position of the satellite with respect

to the observation point (the topocentric position of the
satellite).

10



As we know, every fixed vector in space 1s
determined by the point of application, by the
direction and by the modulus. Depending on
which, values determining the three vectors of
Equation (2.1) are known, the following problems
may be distinguished.

1. The direct problem is calculation of

Figure 1. _
vector Tps l.e., the position of the satellite

K. In this case, the position of the observation point is assumed
to be known, 1.e., vector EC has been calculated. Vector BCK must

be measured. It is possible in this case that if all three of its
components have been measured, the problem is solved directly by

a single Equation (2.1). If only the angles characterizing the
direction of vector BCK have been measured, yet another Eqﬁation

(2.1), compiled for another observation point, is required for
the solution. If only the distances to the satellite (the modu-
lus of vectors BCK) are measured, 1t becomes necessary to make

observations from three points to obtain three equations of (2.1).
When measuring the difference of distances according to two posi- /9
tions of the satellite, observation from six points is necessary.

2. The inverse problem 1s calculation of vector ;C’ i.e.,

the position of observation point C. We shall assume that vector
;K has been calculated — the position of the satellite is known.

The vector BCK is measured. When all three of its components have

been measured, the problem is solved by a single Equation (2.1).
When measuring only the angles characterizing the direction of
vector BCK’ i1t 1s necessary to observe two positions of the

satellite to compile two Equations (2.1). When measuring only

11



distances to the satellite, three observations are required to
compile three equations of observation. When calculating the

position of a point by the measured differences of distances,

three pairs of AES positions are required.

In connection with the fact that the direction and value of

vector r, varies in time — the satellite moves — the necessary

K
element of all constructions is time S. In individual cases,
time may emerge as the measured value, and sometimes it must be
calculated along with other unknowns.

To construct geodetic nets from AES observations, joint
solution of many direct and inverse problems is required.
Essentially, two methods are possible.

1. Combination of the direct and inverse problems by

calculation of the variation of vector EK in time, i.e., the

orbital method. 1In this case the direct problem is used to cal-
culate the satellite orbits — fK(S), and the inverse problem

— to calculate the position of observation points (although
mathematical treatment of all measurements is carried out jointly).
It is natural that time displacement of observations, made for
solution of direct and inverse problems (Figure 2a) is not required
in this case.

2. Calculation of individual (instantaneous) values of
vector PK‘ In this case observations should be made simultane-

ously (synchronously) from the calculated and initial points,
i.e., from a point which is taken either as the initial or may
be calculated by other positions of the satellite. Such obser-
vations, in particular, may be photographic, Doppler and laser
(Figure 2b).

12



The first method, in
which the intermediate
elements for transmission
of observation point coor-
dinates are the orbital
parameters, are called the
orbital elements. The
second method, based on
synchronous observations,
has been named space
triangulation.¥*

orbital and triangulation)
solve the same problem —
calculation of the point
coordinates. However, the
methods of solution differ
considerably.

In space triangulation
all constructions are
based on geometric functions;
therefore, space triangu-
lation is a purely geometric
method.

Figure 2.

%¥Sometimes the term "astral triangulation," meaning that the
directlons to the AES are calculated with respect to the stars,
or the term "satellite triangulation" are used in the
literature. In our view, these terms are Just as Justified (or
unjustified) as the term "space triangulation." Moreover, it
should be noted that the angular values may be measured not only
in a stellar coordinate system, but linear measurements in general
are ilnvariant with respect to coordinate transformations.

13
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In the orbital method laws of satellite motion are used
which are based on an accurate knowledge of all effective forces.
The dynamilc method of processing the results of AES'observations
is used to obtain these data. The ultimate purpose of this
method is the problem of calculating the Earth's gravitational
field and shape. The essence of the method is that the precal-
culated motion of the satellite is compared to the observed
motion, and the characteristics of the Earth's gravitational
field and shape are refined with respect fo the perturbations.
Circumterrestrial artificial satellites are much more cohvenient
for these purposes (in any case more convenient than the Moon),
since their motion is almost completely determined by the Earth's
gravity field. In connection with the fact that calculation of
the density of the upper layers of the atmosphere and the effect
of a number of space factors have not yet been adequately studied,
very extensive observational material must be included in the
processing to reduce thelir effect. -

Until adequately extensive, accurate and well distributéd
measurements are obtained and carefully processed, the basic
problem of the dynamic method cannot be solved and, consequently,
precise laws of AES motion cannot be obtained. '

Therefore, at present the use of the orbital method to
calculate the point coordinates with a high degree of accuracy
is limited. Space triangulation does not depend on the theory of
AES motion and, therefore, its accuracy is determined only by the
merits of geometric construction and by measurement errors. This
also explains the overwhelming use of the space'trianguiation
method to calculate point coordinates. '

14



It should be noted that there i1s no absolute boundary between
the methods of processing the results, since, for example, both
the dynamic and orbltal methods are connected by a common theory
of satellite motion. '

Observation methods may be identified with those of processing
the results, since the results of optical or radiotechnical obser-
vations may be used to solve 5oth dynamic and geometric problems.
In turn, s&nchronous’observations nay be used for both orbital
and triangulation methods.

3. Satellites Used for Geodetic Observations

The process of AES observation reduces to fixation of
certain signals coming from it. If on-board devices, emitting
or relaying signals sent from the Earth, are used for geodetic
purposes in observation of AES, such AES are called active. If
the satellite 1is observed only in reflected solar light, it is

S~
—
o

called passive.

Usuaily, passive.AES are specially not designated for
geodetic measurements. Therefore, if they are equipped with
on-board equipment, it is not used for gecdetic purposes. In
the opposite case, the satellite should be related to active
satellites.

American communication satellites — balloons — should be
primarily included among the satellites of no special geodetic
designation. The first of these, Echo-1, was launched in August
of 1960. It was an inflated sphere, made of a special film,
which was filled after insertion of the satellite into orbit.

A second similar satellite, Echo-2, was launched in January 1964.

15



Satellites of the Echo class, having a rather large diameter (up .
to U0 m), are easily visible on the background of the: stellar sky
and are accessible for observations by simple optical means.

Observations of these satellites laid the basis for creation
of space triangulation nets. Observations of Echo-l1l and Echo-2
for geodetic purposes permitted a primary space triangulation net
to be constructed, which encompasses a number of points on the
territory of the USSR and the socilalist countries [53]. The
Echo-1 and Echo-2 satellites have now ceased to exist. The
successes achieved with geodetic use of these satellites have
led to creation of a speclal geodetic passive AES — Pageos.

This balloon satellite, launched in June of 1966, has a diameter
of about 30 m, and its outer surface is covered with a thin layer
of aluminum, which ensures a high reflectivity. The orbital -
altitude of the Pageos satellite (at the moment of launch —

4600 km above the Earth's surface) permits simultaneous photo=-
graphy of it from points located at distances up to 5000 - 6000 km
from each other.

Successful use of passive Echo AES for geodetic purposes
brought to light the problem of creating special active geodetic
satellites, corresponding to the characteristics»for solution of
geodetic problems. The requirements for geodetic satellites were
formulated in May of 1964 after the Sixth Session of the Inter-
national Committee on Space Research.. These requirements reduce
to provision of minimum effects of atmospheric drag and their
variation, best optical visibility and to selection of optimum
orbital parameters. The general requirements for satellite
orbits, intended to solve geometric problems, are the following:
orbital altitude should be, on the one hand, sufficiently low to
increase the accuracy of calculating point coordinétes, and,on

16



the other hand, should be sufficiently high to ensure visibllity
from points remote from:each other. The orbital inclination should
be sufficiently high that the satellite may be observed at high
latitudes, and eccentricity selected such that the required vari-
atlion of altitudes 1s provided‘for observation from points /13
located at different distances.

For the successful solution of geodetic problems, it is
desirable to ‘have the following on-board equipment on the
satellite: ' ‘

— an optical beacon emitting‘momentary powerful light
flashes. Generatlon of light flashes should be accomplished by
a previously designated program, providing the best geometrilc
construction of the net. The program may be executed by single
commands from Earth or by signals of special on-board devices;

~— radio transmitters of highly stable frequency to produce
Doppler variations, operating in no less than two bands; '

— relays for. radio signals transmitted from Earth for
measurement of distances;

— angle reflectors to make laser measurements;

— highly accurate clocks and data storage to perform
programmed activation of the on-board equipment. Moreover, time
checks may be accomplished by the signals of on-board time trans-

mitted to the observation points]

— a radio altimeter..
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Among the active satellites, the American Geos (Geodetic
Earth Orbiting Satellite) should be noted. - The satellites are
equipped with an optical beacon, which emits a series of seven
flashes each with intervals of four -seconds between flashes.

Along with the optical beacon, there are Doppler tfansmitters,
angle laser reflectors and a system for simultaneous determination
of distance and radial velocity on the satellite [62]. Atomic
clocks, which emit signals for measurements at the given pro-
grammed moments with a high degree of accuracy (up to 50
microns/second), are installed on the satellite.

The French geodetic satellités the "Diadem," launched in
February 1967, play an important role in the creation of a
worldwide geodetic net. These are two similar satellites,
equipped with a system of Doppler transmitters and laser
reflectors.

The number of active and passive AES, used for geodetic
purposes, 1s 1ncreasing from year to year. Interesting deSigns
of special geodetic satellites and systems have been proposed.
One of such design envisions the creation of a satellite whose
motion is not affected by -the atmosphere. Elimination of the
effect of the atmosphere opens up extensive possibilities in a
study of the Earth's gravitational field from observations of
low-~orbiting AES. This is achieved by inclusion of a heavy
satellite into a lightweight correeting shell.

The design of the Geos-C program, which envisions joint
use of several AES in different orbits, is of great interest.
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4. Equipment for Observation of AES for Geodetic Purposes /14

Among the requirements placed on equipment designed for
observation of AES are operativeness, reliability, and accuracy
of measurements. Depending on the problem being solved, one of
these requirements becomes decisive. High accuracy of measure-
ments with comparatively small dimensions and weight of the equip-
ment are primarily required for geodetic purposes; Therefore,
numerous optical (aerclogical theodolites, phototheodolites, AT,
TZK¥, etc.) and radiotechnical goniometric equipment is not used
for geodetic .purposes because of its low accuracy (bearings are
measured with an accuracy up to several minutes). Among gonio-
metric. equipment, the highest accuracy is provided by photographic
units, which permit a satellite to be photographed against the
background of stars.

Both radiotechnical-and laser systems are employed to measure
distances to AES. However, laser systems provide higher accuracy
of measurements. Moreover, Doppler systems, which'measure vari-
ation of AES distance at a fixed time interval (or radial velo-
city. component), are widely used for observations of AES.

Photographic devices,. intended for observations of AES for
geodetic purposes, despite .their variety, may be divided into
three large groups: fixed ;(azimuthal and ballistic), star
trackers (star and equatorial) and satellite trackers.

The simplest in working principle are photographic devices
of the first group. In these devices the camera is rigidly
secured with respect to the horizontal coordinate system at the
moment of observation. Images of stars and AES are obtained in

#[Translator's Note: Expansion unknown. ]
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the form of hatchings and dots on the

~ww~“~“““~“_““W'“““;7 photographic plate (Figure 3). Only point
_/ . images of stars and AES are used for astro-
S S . ‘
/- / .’ / metric processing. However, due to the
,{:MJZ.//);*;Z7“' different velocity and brightness of stars
ya // //7' and AES, it 1s impossible to receive their
L ~ 7 point images simultaneously. The required
Figure 3.

length of satellite exposures is from
several hundredths to tenths of a fraction of a second, and that
of star exposures — several seconds. Therefore, a corresponding
number of satellite exposures is made at an interval of 10 - 205,
and before and after — 2 - 3 star exposures. The moments of
opening and closing of the shutter during each exposure are
recorded to calculate the time of receipt of the point images

of the stars and AES.

The first mass photographlc observations of AES for geodetic
purposes were carried out with fixed devices. They soon became
extensively used due to the simplicity of design, small size,
and convenience in operation. Usually, the first cameras of this
group were produced on the basis of available aerial photographic
equipment.

The first unit of this group in the Soviet Union was the
UFISZ-25, created in 1959 on the basis of the aerial photography
apparatus the NAFA-25/3S [36]. The focal distance of this camera
is 25 cm, aperture ratio is 1:2.5, the objective is an Uran-9,
the shutter is a louver type and the weight is about 30 kg. The
opening and closing time of the shutter is recorded by a digital
chronograph, operating from a quartz generator. The camera
permits passive satellites with a brighness up to 1™ to be photo-
graphed'at an angular velocity up'to 1°/second. The bearing to
the AES is calculated with an error of *5 - 7",
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The fixed photographic units Wild-WC-4 and the RC-1000 have
been widely used abroad.

The Wild-WC-4 unit has been produced since 1962. It is
designed on the basis of the aerial photography camera RC-5 and
is mounted on a modified support of the Wild-T-4 astronomical
universal theodolite. The focal distance of the camera is 305 mm;
the objective is an "Astrotar" and the aperture ratio is 1:2.6.
The Wild-WC-4 unit permits both active and passive satellites
with a brightness up to 7m to be photographed. The accuracy of
determining direction to the AES is about 2",

The RC-1000 photographic unit was developed in 1961 with
the main purpose of photographing the flashes of the optical
beacon of an active geodesic AES. The focal distance of the
camera is 1000 mm. The objective is a telescopic "Telephoto"
type, and the aperture ratio is 1:5.0. The camera provides
images of flashes no weaker than 8™, The direction to the AES
is determined with an error of =1 - 2",

Photography is accomplished in the Wild-WC-4 and RC-1000
units on glass plates, unlike the UFISZ-25 unit, in which film

is used.

The photographic unit of the second group maintains a fixed
bearing of the camera's optical axis in the stellar coordinate
system during observations. Because of this, the star images
on the plate (film) do not shift during photographing and all
stars are received 1n the form of points. The type of photo-
graph obtained during observation of a passive AES by a star-
tracking camera is shown in Figure 4. The process of photo-
graphing passive AES on these cameras differs from that of
photography by fixed cameras in that it is unnecessary to
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produce special star exposures. The
process of photographing the flashes
of active AES is reduced to opening
A of the shutter until the moment of
T ) transmission of the first flash in

. o the series and closing it after

transmission of the last flash.
Figure 4.

One of the most accurate devices of this group is the FAS-34,
created in the USSR in 1969 [36]. This unit is similar to the
above RC-1000 in accuracy. The camera of this unit has a mirror- /16
lens objective a focal distance of 480 mm and an aperture ratio
of 1:1.9. Photography is accomplished on glass plates. Unlike
the foreign cameras of this group, tracking of the stellar sky
in the FAS-3A 1s accomplished during photography with the aid of
an original device, developed by K. Lapushnaya and M. Abele [36]
in 1965 for the AFU-75 unit. This device has been named an
equatorial platform.

Cameras of the third group are more universal and photograph
satellites over a wide range of brightnesses and speeds. The
distinctive feature of these cameras is the possibility of
tracking AES. Tracking is accomplished either by shifting the
plate (film) to compensate for the shift of the AES image or by
the camera tracking the satellite. As a result, the satellite
image 1s maintained for a long period on one point of the plate
(film), and at the same time an increase in the length of satel-
lite exposure is achieved. The most typical representatives of
this group are the domestic AFU-75 (Figure 5) and the VAU, the
American Baker-Nunn (Figure 6) and the camera built by the Zeiss
Company — the SBG (East Germany).
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Figure 5. Figure 6.

The AFU-T75 camera was designed in 1965. This camera has an
equatorial platform for tracking stars. Tracking of AES is
accomplished by shifting a clamped plate with a film in a
cassette. The focal distance of the camera is 735 mm and the
aperture ratio is 1:3.5. The camera permits satellites with a
brightness up to the ninth stellar magnitude to be photographed
in the tracking mode. The accuracy of determining the direction
to the AES is %2 - 3". The camera weighs about 350 kg.

The VAU camera (Figure 7) began operation at the Zvenigorod
Station of the Astronomical Councill of the USSR Academy of
Sciences in 1969. This is a universal camera which permits not
only AES, but distant space objects to be photographed. Opera-
tional control of the camera 1s automated to the maximum extent.
The camera has a highly accurate timing device. A more detailed
description of this camera is presented in [36].
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Figure 7. Figure 8.

Laser devices measure distances to AES and, moreover, they

may be used to illuminate a satellite when it is being photo-

graphed against a star background. However, in the latter case

a considerable increase of emissivity is required. Therefore,
the laser devices used by the United States (Figure 8), France
and Japan (a total of nine units) up to 1971 for geodesic pur-

poses were used mainly for ranging measurements. When designing

laser units, the fact 1s taken into account that the effective

A1

range of the system is proportional to the fourth power of emitted

energy, inversely proportional to the square root of the beam

width, and directly proportional to the square root of the dia-

meter of the recelver aperture.

The divergence (width) of the laser beam of the transmitter

is established as a function of the accuracy of predicting AES

motion and the accuracy of laser guidance. Laser units now have
a beam divergence from 0.5' to 20'. This angle may be changed
during the operation of some units, for example, on the Japanese
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device. The power of the laser varies from 10 to 50 mW, pulse
length — from 10 to 60 nanoseconds, and pulse energy — from
0.5 to 7.5 J.

A laser unit includes a laser transmitter (ruby lasers with /18
A = 0.694 microns are used), a receiver, a platform and a system
for measuring and recording the results. The measuring process
reduces to determining the time interval of passage of a light
pulse from the device to the AES return. Laser guidance on the
AES may be accomplished visually with the ald of a sighting device
or by a program using previously established ephemerides. At
the moment the laser pulse leaves the transmitter, a frequency
cycle counter of 100 MHz or 1 GHz is triggered. The counter is /19
closed at the moment the reflected pulse enters the receiver.
The time interval t, measured in thils manner, makes it possible,
by knowing the speed of light c¢, to calculate the range

1
P == 5 CT.

Range measurement accuracy is mainly determined by three

factors:

— by the steepness of the front and the length of the signal
returned from the AES;

— by the resolving power of the time interval counter;

— by the correct calculation of the varlation of the speed
of light in the atmosphere.

Because of the low power of the signal returned from the AES,
only 1ts presence rather than its shape 1s often established.
Therefore, the pulse length 1s of great importance to increase
measurement accuracy; the less it 1s, the less is the error of
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recording the returned pulse. It 1s assumed that the transmitted
and returned signal, which provides a range measurement with an
accuracy of *0.6 m [59, 60], may be made to agree by increasing
the power and decreasing the pulse length.

The resolving power of the counter depends on the frequency
of its generator, by which the number of cycles from transmission
to reception of the pulse 1s calculated. The counters in modern
laser devices operate from generators of 100 MHz or 1 GHz, and
accordingly, their resolving power (scale division) comprises
10 or 1 nanoseconds (1.5 or 0.15 m). It is assumed that the
resolving power of the counters may be increased up to 0.1 nano-
seconds and, consequently, the range measurement error may be
reduced from 0.015 m.

Range measurement accuracy is affected by the atmosphere,
but the effect of this factor may be reduced to 0.15 m at the
moment of observation if adequate consideration is given to
temperature and pressure.

Thus, taking into account the main error sources, we may
assume that an accuracy of measuring distance to AES of *0.6 -
0.7 m may be achieved. However, laser devices are fixed and,
obviously, unlike photographic cameras, may be used for long
periods at a few space triangulation points for scaling.

The simplest radio engineering apparatus for observation of
AES are Doppler devices. They measure the Doppler frequency
shift, caused by motion of the AES with respect to the observa-
tion point. The devices consist of a receiver for the frequency
emitted by the satellite, a highly stable ground-based generator
and recording devices. The principle of operation of the devices
is based on comparing the frequency received from the AES with
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that of the ground-based generator and in deriving the Doppler
shift from their difference in the form of numerical character-
-istics (n) at small time intervals (t). These characteristics
are proportional to the varilation of distance (Ap) to the AES
during time Tt

Ap=->n,
where ¢ 1s the propagation velocity of radlo waves; and f is the
frequency with respect to which the numerical characteristic 1is
measured. |

If the measurement of the characteristic is related to the

average moment, we may obtain the value of the radial component
of the topocentric velocity of the AES (p)

Due to the simplicity and small dimensions of the device,

Doppler units of different designs are widely used in observation

of AES for different purposes, including those for solution of
geodesic problems.

As in laser units, measurement accuracy depends primarilily
on the correct allowances for radiowave propagation conditions,
the stablility of generators being used, and the resolving power
of the counters. At present, an accuracy of recelving 5 up to
0.02 m/sec has been reached [T71].
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CHAPTER 2
COORDINATE SYSTEMS AND THEIR TRANSFORMATION
Among the many coordinate systems used 1in space geodesy, we
shall consider only those which are required for the following

discussion.

5. Stellar Coordinate Systems

Stellar coordinate systems are spherical. In connection
with the fact that the diurnal parallax of all stars is essen-
tially equal to zero, the origin of these systems may be placed
at ény point both inside (including the center of mass) and on
the surface of the Earth, the spherical coordinates which charac-
terize the bearing toward the star being varied negligibly.

The coordinate surfaces of these systems are: a sphere of
unit radius (R = 1); conical surfaces (8§ = const) with an apex
at the origin of the coordinates and with an axis parallel to
some position of the Earth's rotational axis; and half?planes
limited by the axis of the conical surfaces.

If the initial half-plane passes through the point of the
- vernal equinox, the system does not take part in the diurnal
rotation of the Earth and is fixed in this sense. Such a coor-
dinate system is usually employed in practical astronomy and is
called a secondary equatorial system. The bearings to stars in
this system are given by right ascension a and declination §
(Figure 9).
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Figure 9. Figure 10.

Based on towhich position of the equator and which equinox
the coordinate system is related, the following are distinguished:

— the instantaneous system determined by the instantaneous
equator and the true point of the vernal equinox;

— the average system for the'epoch T, ih which the mean
equator and the point of the vernal equlinox to this epoch are
used.

A system for a specific epoch Ty 1s fixed by the stellar
coordinates in the catalog. Variation of them in time is caused
only by the natural motions of the stars.

An instantaneous stellar system is not an inertial system.
Because of the fact that it 1s fixed in space at every moment by
the direction of the Earth's rotational axis, which varies under
the effect of precession and nutation, the stellar coordinates

~
n
n

in this system vary continuously (the stars shift their position
by 20" per year).

When considering problems of space triangulation, a stellar
coordinate system must be used which differs from an instantaneous
system in the fact that 1ts initial half-plane does not pass
through the point of the vernal equinox, but is located parallel
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to the instantaneous plane of the Greenwlich meridian. This
system participates in the diurnal rotation of the Earth and in
this sense is a rotational system. This system corresponds to
the primary equatorial Greenwich coordinate system used in
astronomy. The bearings toward stars in this coordinate system
are given by the Greenwich horary angle t, or by angle y opposite
in sign to it, and by declination § (Figure 10).

Along with equatorial coordinate systems, a coordinate system
is used in which the coordinate planes are the blanes of the hori-
zon and the meridian of the point. Thils coordinate system is
called a horizontal system. Direction in this system is deter-
mined by the zenith angle z and azimuth A.

6. Transformation of Stellar Coordinate Systems

Satellite coordinates are calculated in the stellar system
which includes reference stars from the results of photographic
observations. For geodesic treatment of such measurements, it
1s necessary that the mutual position of the coordinate axes
of the stellar and ground coordinate systems be correlated.

The coordinates of reference stars are selected from star
catalogs, compiled in the coordinate system given for a specific
epoch (1900.0 + Tc) — the catalog epoch. Because of the fact

that the Earth's rotational axis does not maintain a constant
direction in space with respect to stars, but varies under the
effect of precession, secular rotation, and nutation — the num-
ber of periodic oscillations — the problem arises of recalcu-
lating (reduction) the stellar coordinates from the catalog

system to an instantaneous system for the observation date
(1900.0 + TH). '
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The procedure for such reduction in a matrix notation of /23
formulas more convenient for use by computers, is presented inctne
article of N. I. Idel'son [23] and in a number of more recent
investigations [11, 46], etc.

(i)

Let us select from the coordinate catalog any star (a

5(1)y.

Let us correct them for natural motions from the catalog

*

epoch to the moment of observations, and let us write the direc-
tion cosines of the bearing toward the star

4(1’) == ¢0S (ﬁg) cos qc”
; .
m1(1) = §in (ﬁ(i) cos ('). (i), (6.1)
7271‘) == Sin 6(*)

The effect of precession leads to a variation of the
direction cosines, which is given by the transformation

Ly —'singsinz+4  —cos§, sinz— ~coszsmel ity
+cosE coszcosO —sinE coszcosO - f

mij={ sinf;cosz cos§ cosz— —sinzsin 0" mmlf. (6.2)
 IcosE,sinzcos 0 —sin E,sinzcos 0 : <1
ni cos§sin0 - —sing;sin0®  cos0 Ln“) l‘

(o] i

The Eulerian angles in transformation (6.2) are calculated
with an accuracy to small numbers of the third order by the
Newcomb-Andway expressions:¥

£, = (2304",253 - 1”3971')T-#O”3O2T24—O"018T
z==(2004”2034-1”3977’)T—L1”093124-0ﬂ018u,

(6.3)
= (2004",685 -+ 0" 8.337';(;) T—0",427® - 0, 0427,

wherev=T, — Iy Ty, Tz, and T are given in tropic centuries,
counting from the epoch of 1900.0.

¥These expressions are sometimes transformed by substitution
of the epoch of a specific catalog, for example, 1950.0.
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The effect of nutation must be taken into account to convert
from the mean coordinates with consideration of precession to
true coordinates. With' an accufacy up to the square of small
values of 8¢y and e, transformation of the direction cosines for
nutatioh 1s calculated by the expression

-

The expansions presently used for nutation in terms of
longitude 6y and inclination §e are presented in Astronomical
Papers, Vol. 25, p. 1, 1953, have been published since 1960 in
the Astronomical Yearbook of the USSR. If we discard the terms
of a series whose total effect on the accuracy of transformation 4g5

L

LI '
m,

8 cose 1 — 8¢ mi (6.4)

SPsine —8e 1

1 —d8ypcose —6ypsine
n, h

i
Ill

does not exceed *0.05", the formulas for calculating the nutational
elements assume the form:

— the long-period portion of nutation with respect to
longitude

A= —-17",2327 sin Q — 17,2729 sin 2 (Q - F — D) +
-+ 0,2085 ¢in 29 -1 0,1261 sin 1’ — 0,0497 sin (2Q - U" -}- 2F —2D) -
- 0,0214 in (2Q — 1" -}- 20— 2D) 4- 0,0124 sin (Q -+ 2F — 2D) + 6.5)
+0,0016 sin 20’ — 0,0015 sin 2(Q =41’ ++ F— D) +-
40,0045 sin (Q — 20 4 2F);

— the short-period portion of nutation with respect to
longitude

dy = 07,2037 sin 2(Q -+ F) 40,0675 sin I — 0,0342 sin (Q + 2F) —
— 0,026 sin (2Q 4 + 2F) —0,0149 sin (I — 2D); (6.6)
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.. .= the long-period portlon of nutation with respect to
inclination
Ae= =-9",2100 cos Q + 0,5522 cos 2 (Q - F — D)_—— 0,0904 cos 29 +.
40,0216 cos (2Q + 1"+ 2F --2D) — 0,0093 cos (2Q — 1" 2F —2D) —
— 0,0066 cos (Q 4 2F — 2D) 40,0007 cos 2 (R -1 +F — D) — (6.7)
—0,0024 cos (Q — 2L+ 2F);

— the short-period portion of nutatlon with respect to
inclination

de = 07,0884 cos 2 (Q 4 F)+0,0183 cos (2 + 2F) -+

" -+0,0113 cos (22 -1 4-2F); (6.8)

de =Ae--de.

The arguments in the expansion of the nutation, which are
fundamental Brown constants, are calculated by the formulas

Q = 250°10'50",79 — 1934°0831”,23T -+ 7" 487 --- 0”,00807'3,
1 = 296°06467,50 4- 477198°50' 56", 797 + 337,00T2 -4- 0",05487°%,
17 - 358°287337,00 -1 85999°0259",107 — 07,5472 —— 0°,01201",
F = 11°15'03",20 4 483202°0130",547' — 11,56 T — 07,00127'*,
D = 350°44 147,95 - 445267°06'54" 18T — 57,177 4-0",00687,

(6.10)

S —

As a result of the transformations carried out, we calculate /25

the true stellar coordinates ai and Gi
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. m,
U; = arclg 5

4

8, = arcle _....,.-..__,..'47!,..~___ *
SR AT = o

i.e., the angles characterizing the direction toward the star with
respect to the Earth's instantaneous rotational axis (angle §) and
in the plane of the instantaneous equator with respect to the true
point of the vernal equinox (angle‘a).

Conversion from a secondary. equatorial to a horizontal
coordinate system is accomplished by rotation arbund the Earth's
rotational axis at the angle s, equal to the local sidereal time
of the point, and angle ¢, equal to the latitude of the point, by
formulas

tg A= cos 8 sin s

T —sin §cos @-|-cos dsingceoss ? (6.12)
€os z-= sin @ sin -~ cos @'cos § ¢os s. )

When converting from a primary equatorial system to a hori-
zontal system, rotation by angle s is replaced by rotation by
angle A, equal to the longitude of the point.

7. Geodetlc Coordinate Systems

The position of the point in a geodetic coordinate system is
determined by the altitude H above the accepted reference ellip-
sold, latitude B and longitude L. Geodetic latitude 1s calculated
as the angle formed by the normal to the ellipsoid surface with
the plane of its equator, and geodetic longitude — the dihedral
angle between the planes of the initial meridian and the meridian
of the given point.
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Such an ellipsoidal coordinate system is used in processing
ground geodetic measurements. A system of three-dimensional recti-
linear coordinates X, Y, Z is more convenient in space triangu-
lation, which in its essence 1s three-dimensional and 1s not
physically connected to any reference surface. Transformation of
ellipsoidal geodetic coordinates to rectilinear coordinates 1s
accomplished by the formulas

X =(N4I)cos BeosL, '
Y==(N-4Il)cosBsinL,

Z=(-Y N4 ) sinB, (7.1)

where

. a2
N o= T e T R
- Vazcos? B-|-b2sin2 B

a and b are the semi-major . and semi-minor axes of the reference

ellipsold, respectively.

Conversion from X; Y and Z to B, L and H 1s inevitably ng
related to iterations when c@}culating latitude B and altitude
H. Formulas convenient for calculations on electronlic computers
may be derived from (7.1) after raising the first two expressions
to the second power and adding them, and after dividing the third
expression by the result obtained

Y z N2 . o
tgL::T; th:—(m-;;;;ﬂ-}*-}‘::{_—lf th———C{-dtLL. (702)

Formula (7.2) permits the cycle of approximations to be
organized. For the first approximation, it is assumed

tan B = c.
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For the second and successive approximation of the value of B,
from the preceding approximation we calculate the values

_H:.—'(XZ—{—YZ)‘/isecB——N,

Nee o,
© (1—e2sin2 B)'/s

after which the derivations from Formula (7.2) are repeated. The

process of approximations 1s completed with divergence of AB from

the next two approximations which is less than the given toler-

ance 6B Essentially three approximations are adequate in all

tol’
cases to obtain tolerance GBtol = 0.03".

Ellipsoidal and triangular systems are different in form,
but both are geodetic by definition.

Different geodetic systems are used in the treatment of
geodetic nets of different continents and even countries. Each
of them has its own point of origin, in which 1s accomplished the
"external" orientation of "its own" reference ellipsoid. The
vertical line at the point of origin in such an orientation 1s
correlated with the normal to the reference ellipsoid, and the
plane of the meridian of the point of origin is established
parallel to the Earth's rotational axis in terms of the astro-
nomical azimuth. In this case the vertical line and azimuth
at the point of origin are calculated from astronomical observa-
tlons and may be corrected for deflection of the vertical. Thus,
geodetlc systems are oriented for a specific epoch in a stellar
coordinate system. Failure to take into account deflection of
the vertical line at the point of origin, as well as to disting-
uish the shape and dimensions of the acce~ted reference ellipsoid
from the general Earth ellipsoid, leads . . shift of the origin
of the coordinate system (the center of the reference ellipsoid)
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with respect to the Earth's center of mass, without violating
the parallelism of the minor axis of the reference ellipsoid with
the Earth's rotational axis [29].

8. A Common Ground Coordinate System

Until recently the problem of establishing a common ground
coordinate system was considered more in theoretical than in
practical formulations. This is explained by the difficulties
of making the necessary sufficiently accurate and extensive
gravimetric and geodetic measurements on the Earth's surface /27
(especially the surface of the ocean). Geodetic use of satellites
(the orbital method) in combination with gravimetric methods now

permits the calculation of a ground coordinate system.

Compared to geodetic systems, a ground coordinate system
includes a reference surface, which may be the surface of an
ellipsoid of rotation with parameters a = 6,378,165 m and a =
1:298.25, recommended by the l3th Assembly of the International
Astronomical Union (1967). The origin of the coordinate system
is located at the Earth's center of mass. The position of the
point defined as the Earth's center of mass is sufficiently
stable. As_Professor I. D. Zhongolovich [19] points out, a mass
with an area of 10 x 10 equatorial degrees and altitude of 10 km
on the Earth's surface would have to be shifted by a distance
on the order of 1 km in order to shift it on the Earth by only
1 centimeter.

The minor axis of the common Earth ellipsoid coincides with
the mean rotational axis of the Earth. The three-dimensional
direction of the mean rotational axis of the Earth is fixed with
respect to the stars by the coordinates of the mean pole for 'the
mean epoch of 1900 - 1905, and its displacement with respect to
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the instantaneous pole 1s calculated by the International Polar

Service from observations at five points, located approximately

along the parallel at 39° North Latitude. The invariability of

the latitude of these points 1s naturally assumed in this case,

since in the opposite case the concept of the mean pole would be
very indefinite.

The plane of the initial meridian is established by deter-
mining the beginning of the calculation in a common time system.

In shape the common ground coordinate system may be ellip-
tical (By, Ly, Hg) and spatial-rectangular (Xg, Yg, Zg).
Conversion between them is accomplished by Formulas (7.1). It
is more convenient In space geodesy to use the spatial-rectangular
system.

9. Transformation of Coordinates from One Geodetle¢ System

to Another and Conversion to a Common Ground System

Establishment of a common ground coordinate system may be
accomplished by a geodetic system (or several geodetic systems)
by transfer of its origin to the Earth's center of mass, i.e.,

by calculating the vector Ari(AXi, AYi, AZi) of the origin of

the coordinates of a geodetic system in a common ground system.
If, moreover, the geodetic system has misalignment of the axes,

it is first necessary to rotate it by three Euler angles (e, w, ¥)
to achieve parallelism of the axes of the geodetic and common
ground systems. In this case the radius vector of each point ry

of the geodetic system 1s transformed to the radius vector r'i,

where r', = Mr

i i
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. 1 —o P 1
M == 1) 1 —t |, (9.1)

— € 1

Thé‘general transformation of coordinates of the points from
a geodetic to a common ground system may now be represented by
the expression

I‘;:-.M'l‘r{—Ar‘, (9'2)

The orbital method of space geodesy permits the calculation
of all six elements of transformation of (9.2), i.e., complete
calculation of the orientation of the common ground coordinate
system. The space triangulation method 1is used only to calculate
the angles which characterize the inclinations of geodetic systems
with respect to a common ground system, i.e., three elements of
the transformation (9.2).

The impossibility of relating the origin of coordinates of
a geodetic system to the Earth's center of mass by the space
triangulation method 1s obvious. This is determined by the fact
that the angular measurements in this triangulation are essentially
insensifive to transfer of the origin of coordinates, and linear
measurements are generally invariant to coordinate transformations.

If transformation of (9.2) is established for each geodetic
system, the mutual shift of thelr origins may still be calculated
from the differences Ar'ij, and at the same time the problem of

the relationship of geodetic coordinate systems may be solved.
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In the future, taking into account the smallness of tﬁe
possible inclinations of geodetic systems, we shall disregard
them, with the exceptlon of individual cases which will be
indicated. -

10. Time Measurement Systems

A knowledge of the precise time of observations 1s required
for transition from a stellar coordinate system to one, rigidly
coupled to the Earth. In connection with this, we shall present
the brief characteristics of time measurement systems, used both
in astronomy and in space geodesy.

Periodic processes, whose period is constant with a high
accuracy, are used as the standards for time measurement. The
Earth's rotation was the standard for many centurles, with a
corresponding unit of measurement, days, and 1/86,400 part of a
day — the second. However, in recent decades a whole series of
seasonal, secular and irregular nonuniformities in the motion of
our planet was determined. Therefore, a unit of time measurement,
based on the resonance frequency of quantum transitions of cesium
atoms, now is used in the International SI System. This unit is
equal to 9,192,631,770 emission periods, corresponding to the trans-
ition between two super-thin levels of the basic state of an
atom — a cesium isotope with a mass number of 133 in a zero mag-
netic field. The second calculated in this manner is very close /29
to 1/86,400 part of a day and 1is called an "atomic second," and
the time scale determined by this unit is called "atomic time"

(AT). The clocks for AT time are atomic clocks, which consist

of a continuously operating quartz generator and a cesium fre-

quency standard, which is switched on periodically to check the
nominal frequency of the quartz generator.
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The high stability of an atomic time scale led to the fact
that it replaced the astronomical time scale during a study of
most physical phenomena, and now astronomical time is only a
characteristic of the Earth's rotation. However, when investi-
gating the position of objects in coordinate systems, rigidly
coupled to the Earth, astronomical time, which determines the
Earth's rotations with respect to the inertial coordinate system,
should be used.

Therefore, let us dwell on astronomical time systems. As
we know, the length of days is different and depends on which
point of the firmament, reflecting the Earth's rotation, describes
a total revolution (for which points the interval between two
successive culminations is taken): the point of the vernal
.equinox (stellar time) and the center of the visible Sun (true
solar time) or "average" Sun — a fictitious point whose motion
1s assumed to be uniform during the course of a year (mean

solar time).

Mean solar time, counted from midnight at the Greenwich
meridian, is called Universal Time. Three systems of Universal
Time are distinguished. '

A}

1. TUy¢ — Universal Time, obtained on the basis of direct
astronomical calculations. If time 1s considered as a phase
angle of the Earth's rotation in space, TUy is the angle between
the instantaneous position of the Greenwich meridian and the
declination circle of the mean Sun.

2. TUl — this 1is TU, time, into which corrections are
introduced fdr shifting of the terrestrial pole, caused by oscil-
lation of the Earth with respect to its rotational axis. Thus,
TU1l may be regarded as the angle counted from the mean Greenwich
meridian.
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3. TU2 — this is TUl time, into which are introduced
corrections for the seasonal irregularity of the Earth's rotation.
Unlike TUy, and TUl time, which are not uniform due to seasonal
variations in the Earth's motion, TU2 time may be regarded as
uniform for a rather large time interval (up to several years,
because the secular irregularities of the Earth's rotation are
essentially discernible only at large time intervals). However,
to solve various types of problems of celestial mechanics over
prolonged time segments, strictly uniform "ephemerides" time TE
with a constant unit of measurement — the second, equal to
1/31,556,925.9747 part of a tropical year, beginning on 31
December 1899, was introduced. Practical calculation of TE time
is carried out from observations of the orbital motion of the
Moon around the Earth.

As alreédy indicated above, the TU, time scale 1s obtained /30
from astronomical calculations. These calculations are made at
a number of time bureaus and then equalized by comparing readings
of time bureau clocks. Corrections to TUp, time during transition
to TUl time are calculated from the coordinates of the instanta-
neous pole, determined by the International Pole Service. Trans-
ition to TU2 and TE time is accomplished by extrapolation of
corrections, derived on the basis of investigating the irregulari-
ties of the Earth's motion during preceding years. In recent
years, extrapolated TU2 and TE time systems have been replaced by
highly stable atomic time, which may be measured with a high
degree of accuracy (10-'° and even more accurately) in several
minutes, whereas observations over the course of a number of years

are required to obtain TU2 and TE times with such accuracy.

The precise value of the difference of AT = TE - TUl between
ephemerides and Universal Time is calculated from an analysis of

observations of the Moon, and the approximate value of ATextrap
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is published for the current year in the astronomical yearbooks.
This value was +38.0% for 1970.5.

When calculating transition (TAl - TU2) from approximately
uniform TU2 time to atomic time in the TAl scale of the State
Standard of Time and Frequency of the USSR, it was assumed that
these times coincided on 1 January 1664 at 12hTU. This difference
was about SS by the beginning of 1970.

It may be discerned from the above that when solving problems
of space triangulation, in which one of the coordinate planes is
the plane of the mean Greenwich meridian, TUl time should be

used.

For problems solved by orbital methods, a system of uniform
time, atomic time, should be used for integration of equations
of motion. To bring atomic time into agreement with TUl time,
the origin of counting in atomic time may vary periodically so
that the difference in these systems does not exceed 15, Thus,
the scale of such atomic time will be stepwise uniform.
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CHAPTER 3

PRELIMINARY PROCESSING OF THE RESULTS OF OBSERVATIONS

11. Problems of Preliminary Processing

The results of AES observations obtained at points usually
may not be directly used to adjust space triangulation. This is
explained by the fact that these results sometimes do not contain
numerical characteristics, as 1s true, for example, in photo-
graphic observations: 1in this case the result of observations is
photographs of AES against the background of the stellar sky,
subject to further measurements. Sometimes, for example, in
radiotechnical measurements, the results are obtained in the form
of numerical characteristics related to the elements of space
triangulation by such complex mathematical functions that direct
use of these measurements in space triangulation is essentially
impossible.

In connection with this, the problem arises of obtaining from
observational materials those numerical characteristics which are
related by simple functions to the unknowns of space triangulation,
which at the same time may be obtained with a sufficient degree
of accuracy from the materials of direct observations. Thus, the
main problem of preliminary processing is to obtain "measured
values" of space triangulation with consideration of their real
dependence on the results of direct measurements. Problems of
preliminary processing also include analysis of the accuracy of
the measured values,¥ determination and checking of observations

¥Usually, such an analysis may be accomplished only in terms
of internal conformity of measurements.
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which contain gross errors, introduction of corrections which take
into account the effect of external factors and equipment correc-
tions, and reduction of measured values to the centers of observa-
tion points.

During preliminary processing of measurement results, an
attempt is made to consider all systematic equipment corrections
and all corrections for external factors. However, there are a
number of reasons which limit measurement accuracy. For radio-
technical measurements, this is an inaccurate knowledge of the
propagation speed of electromagnetic waves in the atmosphere and /32
their refractive index in the ilonosphere and troposphere, which
means the corrections for refraction are inaccurate. There are
several causes which limit accuracy for photographic observations.
Let us dwell briefly on some of them.

The accuracy of calculating the direction toward an object
from a photograph of the stellar sky depends on the accuracy of
relating the stars on the photograph to an inertial coordinate
system. In order to do this, it is necessary to have a sufficient
number of stars on the photograph, the positions and natural
motions of which are known with a high degree of accuracy.

Fundamental star catalogs, which may provide the necessary
accuracy, contain only an insignificant number of stars. Thus,
for example, catalog FK-4 (Fourth Fundamental Catalog, 1963),
which 1s the most accurate at present, contains only 1,535 stars.
But, as has been determined recently, this catalog contains a
systematic error of about 0.01° for right ascensions between o =
15h and o = 18h. The most complete of the fundamental catalogs,
the General Catalog Boss (published in 1936) contains about 30,000
stars., It is insufficient to process the photographs of this
catalog, because no more than 3-5 stars, available in this
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catalog, impinge on the photograph of a satellite camera, usually
having dimensions of 18 x 18 cm. It should be noted that system-
atic errors in the differences of coordinates of the Boss and
FK~4 catalogs in right ascension (a cos &) reach 0.038% and decli-
nation (8) 0.37", and in natural motions (for 100 years) for
right ascension, 0.067° and for declination, 0.48" [55].
: I

Along with fundamental catalogs, ‘different photographic
catalogs are used whose accuracy is considerably lower; this is
especially true of the natural motions of stars. Moreover, there
are significant systematic inconsistencies between different
photographic catalogs (and even their individual parts).

In 1966 the Smithsonian Astrophysical Observatory published
a star catalog which included the coordinates and natural motions
of 258,997 stars from different catalogs. The positions of these
stars are presented for epoch 1950.0 in the FK-U4 system. All
errors of the primary source catalogs entered the newly compiled
catalog. Therefore, the errors in star positions for epoch
1963.0 comprise an average of 0.4". However, if approximately
100,000 stars have a mean square error up to 0.3", more than
20,000 stars have a mean square error exceeding 0.8". And since
the greater part of the error occurs due to the imprecise
natural motions of stars, by 1970 the errors of star positions
had increased.

Random errors of star positions may be partially eliminated
by increasing the number of stars used in each photograph, but
the problem of increasing accuracy may be solved only after the
compilation of star catalog AGK-3. This is an important work
which is being carried out by astronomers of many countries and
will be completed in the future.
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Along with errors in the coordinates of reference stars, /33
taken as.fixed reference points, the accuracy of determining the
bearing toward AES 1s affected by a number of other factors, which
may only be partially eliminated by processing. For example,
errors due to the non-rigorous perpendicularity of the photographic
plane to the optical axis of the camera, inaccurate knowledge of
the center of projection, and radial distortion are eliminated in
calculations. The effect of random errors, caused by irregular
deformations of the photoemulsion layer, the negligible portion
of differential refraction, etc., may be appreciably attenuated
by selection of a large number of reference stars, located as
closely and as symmetrically as possible to the AES image. The
effect of random guidance errors on star and AES images during
measurements on coordinate-measuring machines 1s attenuated by
repeated guidance with rotation by 180° of the object being

H

measured.

However, guidance errors in cases of very blurred and
extended 1lmages usually systematically distort the calculated
equatorial coordinates of the satellite. Such images are obtained
if the camera objective has different dlscernible aberrations
(for example, a large coma), with coarse graininess of the
photoemulsion layer, due to different photoeffects. One of the
main reasons for the fact that AES images are not received as
points during observations in the tracking mode, is the poor com-
pensation for the satellite's motion. There is only one way to
reduce the effect of these errors — perfection of the observation
equipment and improvement of the quality of photographic materials.

The error most difficult to consider and correct is caused
by the scintillation effect, which occurs due to the various
turbulent motlions of the atmosphere. This effect is reflected
in different ways on star images, photographed under long expos-
ures, and AES images, photographed with very short exposures.
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12. Preliminary Processing of the Materials

of Photographic Observations

As a result of photographic observations, AES motions with
respect to reference stars at specific moments of time are recor-
ded on the photograph. In order to obtain angles which charac-
terize the topocentric direction toward the 'AES and which are
"measured values" of space triangulation, the coordinates of the
star and AES images on the photograph must be measured, the coor-
dinates of reference stars must be selected from star catalogs,
the time recording data must be processed and the measured plane
coordinates of AES must be recalculated to equatorial coordinates
for the epoch of observation.¥

For this purpose, stars which will be reference points on Liﬂ
the photograph are first selected and their coordinates are
determined from the star catalog, i.e., the one-two-one congru-
ence of the stars represented on the photograph to stars having
coordinates in the catalog is established. This process 1is

called "star ildentification."

Star identification is usually carried out visﬁally with
the aid of different star atlases by comparison of the star con-
figuration on the photograph with that on the pages of the atlas.
However, identification may also be accomplished with the aid of
electronic computers, by comparing the'difference of star coor-
dinates in the catalog to the corresponding image of scaled dif-
ferences of the coordinates measured on the photograph. In this
case 1t is first necessary, naturally, to have the star catalog
recorded in the computer memory and sécondly, to know rather
precisely (no more roughly than 0.5°) the equatoridal coordinates

¥By analogy with calculatio.i of star coordinates in photo-
graphlc astrometry, the complex of these operations i1s sometimes
called satellite astrometry.
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Figure 11.

of the center of the photograph. Star identification with the aid
of electronic computers is accomplished by the method of sequential
sorting of star coordinates and does not differ essentially from
visual identification.

After the reference stars have been selected, the mutual
dispositions of AES images and reference stars must be measured.
The measurements are carried out on highly accurate coordinate-
measuring machines, which provide a measurement accuracy of 1 — 3
microns. The most widely used machine for this purpose 1s the
coordinate-measuring machine of the Karl Zeiss Company (GDR, Jena)
the "Askorekord" (Figure 11), equipped with electronic apparatus
for automatic recording of the readings and delivery of them for
printout and perforation.

The congruence between the equatorial coordinates of stars
and the measured plane coordinates of their images on the photo-
graph must now be established. For thils purpose, errors for
refraction and annual aberration should first be introduced into
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the equatorial coordinates of stars, at the moment of observations
(Article 9) in order to obtain the visible coordlnates of stars
corresponding to their mutual dispositidn on the celestial sphere
at the moment of observation. '

Correction for refraction at the zenith distance is calculated
by the formula [21]

Az = —58",20 tg z - 0,07 tg? 2. (12.1)

By decomposing thils correctlon into components of right
ascension and declination, we have

Ao = Az sec § sing,
A8 =Azcos g, (12.2)

where q is the parallactic angle.

Correction for annual aberration is calculated by formulas
[21]
Au:=Cc+ Dd,
AS=Cc' +Dd’,

c==-=cosasecd; ¢ =={fgecosb-~sinusinb;

A
15
d=—é~sinasec6; d’ == cos« sin §; (12.3)

C=—FkcosL-cose; D=-—ksin Lm/,

where k 1s the constant of annual aberration and HD is the longi-

tude of the Sun at the moment of observation.

Correction of the star coordinates for diurnal aberration
may be ignored due to its smallness.
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Let us now turn to consideration of the relationship between
the equatorial coordinates of stars (a, 8) and their plane rec-
tangular coordinates on the plate. The image on the plate is the
central projection from the second center point of the objective.
" Let us introduce on the plate a coordinate system with origin o
at the optical center of the photograph.*

Let us take the projection of the hour circle of the point
on the celestial sphere with coordinates o = A and § = D, which
is projected into the optical center, as the n axis, and the
perpendicular to the n axis at the origin of the coordinates —
as the £ axls. Let us determine the positive dlirection of the
axes by the increment of decllination and right ascension, respec-
tively. The coordinates on a photograph wilith such a direction
of the axes are called ideal or standard in astrometry. Let us
consider the projection s of any star S with equatorial coordin-
ates o, 8. The distance SO0 on the photograph will be

N
O\

SO=Ftzo, (12.4)

where w is.the angle at the center point of the objective, equal
to the arc on the celestlal sphere between the star and the point
corresponding to the optical center.

Coordinates & and n of the star image will be

E=F tgwsin p,
_M=Ftgwcosp, (12.5)

where p 1s the position angle (Figure 12) and F is the focal
distance of the objective.

#The base of a perpendicular, drawn from the second point
of the objective to the plane of the photograph, is called the
optical center of the photograph.

51



‘Let us consider the images
P of the hour circles of points S
and O on the celestlal sphere.
From spherical triangle SPO, taking
the fact into account that SO = w,
SP = 90° - §, and OP = 90° - D,
we have

QL‘\A——""‘ ol

i \
Objective

sin psin o= sin («— A)cos D,’
cos pcos © = sin § cos D — cos § sin D cos (a— A4),

(12.6)
Figure 12.

Angle w, in terms of the property of central projection, is equal
to the angle between the direction toward the star and that toward
point O.

The cosine of angle w is found as the sum of the products
of the direction cosines for the directions 0;S and 0;0.

cos®==cos § cos D sinasin 4 +-cos§ cos D cosacos A+
+-5in & sin D =cos («u— 4) cosﬁcosD+sinasin'D. (12.7)

Dividing the right and left sides of Expressions (12.6) [by (12.7),
after simple transofrmations, we obtain

EeJ ctg §sin (w— A4)
ctg 6 cos (w~—~A)cos D+-sinD *
We=T cos D —ctz S cos (w—A)sin D
ctg 6 cos (w—aA)cosD-}-sinD °

(12.8)
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The inverse relation is defined by expressions
— 13
o = arclg FceosD—nsinD 4, (12.9)

_ ncos D+ FsinD
& == arctg Fceosh—vysinD

cos (u— A).

However, the coordinates of stars and AES, measured on the
photograph, will not be ideal coordinates — the origin in the
coordinate-measuring machine does not coincide with the optical
center of the photograph, and the coordinate axes do not colncide
with the directions of the axes of 1ldea coordinates. Therefore,
in order to convert from measured (x, y) to idea (&, n) coordin-
ates, it is necessary to rotate and shift the system

E=a,+xcos0-—ysin0, _
N="byxsin 6-}-ycos 0. (1_2'10)

Essentially, the relationship between ideal and measured
coordinate systems 1s more complex, because central projection is
idstorted conslderably due to the different aberrations of the
objective, inadequate clamping and non-equalizing of the film
during photographing, irregular deformation of the photoemulsion
layer, etc. This requires consideration of hilgher-order terms
in the relationship between ideal and measured coordinates.
Therefore, we usually use polynomials of the type

§=ay+ ae-t ayzy- agy -1 ag2® ;- agyt - a5 (2* -+ %) z,
=3 . . 2 2 9 o (12 3 ll )
N= by + byz -+ b2y -+ bgy + byz® - by® + bg (2 + 1) y.
Each reference star, for which coordinates x, y are measured
and ideal coordinates & and n are calculated, ylelds a pair of
equations (12.11), which may be considered as correcting equations

for calculation of coefficlents ai and bi'
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It is natural that no less than 10 — 12 reference stars
are required for a reliable calculation of the coefficients of
polynomial (12.11) by the least squares method. Having calcu-
lated coefficients ay and bi’ the ideal coordinates of the

measured positions of AES may be calculated by Formulas (12.11)

and then their equatorial coordinates — by Formulas (12.9). To
analyze the accuracy, u# — the error of unit weight in terms of

residual deviations VE and vn, the weight of each unknown,

obtalned simultaneously with solution of normal equations for
coeffilcient ay and bi’ and the mean square errors of AES coordin-

ates are calculated.

When the dependence of ideal and measured coordinates is
linear, the described method is called Turner's method in astro-
metry, and when higher-order terms are used, 1t is called Turner's
generalized method, or Turner's higher-order method.

The formulas are valid in those cases when the random errors
of the positions of individual images on the photographs are
greater than those of the coordinates of reference stars in the
catalogs.

We may assume at present that the accuracy of star coordin-
ates in catalogs is 1 1/2 — 2 orders higher than that of the
measured coordinates on the photographs. In the future, as
equipment and photographic materials improve, the errors of star

~
(o)

images on the photographs may be commensurable with the errors
of star catalogs, and it will then be feasible to take into
account the errors of initial reference stars.
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Along with Turner's relatlons between 1deal and measured
coordinates, described above, other methods of calculating the
ideal coordinates of AES are also used. For example, three
reference stars, located at the apexes of a triangle, in approxi-
mately whose center of gravity the object is to be identified,
are used in Schlesinger's method [68]. The coefficients D, are

calculated from the measured coordinatesbof the images of three
reference stars (Xp, Y13 X2, Y2, X3, y3) and the object to be
identified (xo, ¥yo). Theh, by using these coefficients and the
ldeal coordinates of reference stars Ei’ ny (1 =1, 2, 3), we

calculate the ideal coordinates of the position of the AES to be
determined from the formulas

Dy = (2= 2) (¥ — Yo)— (b — ) (2 — ),

Dy = (x5 —2,) (y1—y,) - (¥ — o) (11— 2, ),
Dg=(2,— Zo) (¥ —Yo) — (11 —Yp) (22 —Z),

D= (=) (s—y) ~ (@ —2) Ga—v)y (12.12)
E D151 Dol Dity
©0 T D ?
_ D - Dop 4 Dy
1y =2 5 .

Deych's method [13] is based on the linear-fractional rela-
tion between ldeal and measured coordlnates

E= a11Z2-1- a1y -+ e13
ag1z+agy -1’

n = Saztany oy (12.13)
anztagy+1
and uses the correcting equations
Vg = an + @yl + a3 — 05,28 — ag,yt —, (12.14)

Un=anZT 1 QY + A3 — a3, 2N — agyn—- 1,
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There are a number of graphi-

i °% cal and graphoanalytical methods
S0 5o in addition to the analytical
x methods of processing photographs.
o o5, o.ts As an example, let us cite one
ol ~ method, proposed by Pulkovo _
astronomer A. A. Kiselev [27].
Figure 13.

In Figuré 13, S1, S2 and S3 are the reference stars, Sy, is
the position of the AES and N 1s the auxiliary point located at
the intersection of the straight line connecting both reference
stars and the straight line connected the third star and the
position of the AES. We initially calculate the equatorial coor- /39

dinates Gy and 6N of auxiliary point N

Aot
tg (ay—0)=ptg ——,
(% =1) 2 (12.15)

1g 8, == [tg 8ysin (o —ay) - tg 6, sin (uy —04)] cosec Aa,

where o3, 63, a2, 82 are the equatorial coordinates of stars S; .
and Sz3; a §,, are the equatorial coordinates of auxiliary point

Nj

N’ °N

Ao =0y —ay;
1 Y.
== - (0 - 0g);
- CArr ) cos 6,
TF% [ cosd; .

( Arr ) cos 8y

14 -7 s 51

=|; z}S

F is the focal distance of the camera;
’—'z"%“("rl“"z);

Ar=ry—ry;

rr=Pq$r‘“o;tsf+%yr_%°’tsf;

ry=V (23— | ts")z‘f‘_(!/r‘ Yo. ts)_2;
p= y1 (o —23) + Vo (Tg—21) -+ ¥3 (21 — 20)
Ys (20— Z2) -+ Yo (23 —23) + y2 (23— 20) "
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After the coordinates of point N have been found, the coor-
dinates of the AES position (Sy) are found from points Ss and N
in a like manner. '

Having obtained the ideal coordinates of the AES by one of
the above-described methods, its equatorial coordinates may be
calculated from Formulas (12.9). The equatorial coordinates of
the AES will be in the same system as those of the reference
stars. Because of the mutual motion of the AES and the Earth,
the bearings toward the AES do not undergo annual aberrational
displacement; therefore, the coordinates of the AES, obtalned
from the visible coordinates of stars, will be true, distorted
only by the effect of refraction. The aberration caused by
motion of the AES with respect to the observer is usually calcu-
lated by introduction of correction at the moment of observation,
similarly to planetary aberration (Section 14). In order to
eliminate the effect of refraction, we should introducé correc-
tion for refraction with a sign opposite to that of correction,
introduced into the star coordinates. Moreover, we should take
the fact into account that refraction has a different effect on
stars, which we may assume to be infinitely distant, and for the
satellite, which 1s located at a flnite distance. The correction
of the zenith angle of the satellite Az will be

. an " " 481",6
Az=58 ,?‘Otgd«—O,07tg3z—-~‘—‘g——.tgzsocz, (12.16)

where @ 1s the distance to the AES in kilometers. The last term
of this formula is called the "refraction parallax."¥*

*In Weiss's investigation of 1960 [11], the coefficient is
assumed equal to 435.0" rather than U481.6", and the last term of
formula has the form (435"/d) tg z sec z (1 - e%-1385d cos z),
This divergence 1s negligible wlthin the accuracies of the AES
direction obtained at present.
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In some cases [46], visible rather than true coordinates of
reference stars, and their average values for the catalog epoch
are used. Only the natural motions of stars are taken into
account and only equatorial coordinates of the AES for the same
epoch are obtalned. In these cases, the coordinates of the AES
are reduced to their true position. Computational operations are
reduced somewhat with this method, but residual errors may occur
due to the differential effect of refraction and aberration.

Besides the motion of the Earth as a solid, which is taken
into account by reduction to true positions, the effect of
motions of the poles in the Earth's mass should be taken into
account, and corrections are lntroduced 1into the measured equa-
torial coordinates of the AES due to variation of the pole by
formulas similar to the formulas for correcting latitude and
longitude [21].

CAd = Ay = — [y cosy—z siny] tgﬁ,
N — zcosp—psing, (12.17)

where x, y are the coordinates of the instantaneous pole.

At observation points, cases may be encountered when they
use different equipment for observations of AES, spaced at some
distance from each other. In this case, the problem arises of
reducing the measurements to a single point, used as the center
ofvthe observation point. For such reduction, the elements of
reduction, similar to the centerings in ordinary geodetic or
a§tronomical measurements, must be known with only the difference
that, besides measurements of horizontal distances, excesses
should also be measured without fail. We shall assume that all
the required measurements have been completed and the differences
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of the rectangular geocentric coordinates (u, v, w) of equipment
for observation of AES and the center of the observation point

have been calculated.¥*

Let us find the extent to which the "measured values" of
space triangulation — the equatorial coordinates of AES —
change upon conversion from an observation point with coordinates
X, Y, Z to a point with coordinates X + u, Y + v, Z + w. After
differentiating (15.2), we obtain, after elementary transforma-
tions of correction for centering,

usiny veosy

= K T heosE
pcosd  pcosd ) (12.18)
wcosysind - vsinysin§  wcos 8
P p. o

Co=-

As can be seen from Formulas (12.18), distance p must be
known to calculate corrections to equivalent coordinates o and §.
Since the distances between different installations are usuaﬂly
small, it is sufficient to know the value of p approximately.¥*#*

13. Preliminary Processing of the Results of
Doppler and Laser Measurements

As 1n photographic observations, those numeérical character-
istics which are further called the "measured values" of space
triangulation, may not be immediately obtained from direct
measurements in radlo-technical observations. Only certain para-
meters of the propagating radlo signal (a light signal‘in the

¥When cblculating u, v, w, it is unnecessary to know the
coordinates of the center or of the equipment, but it is impor-
tant only to obtain the correct increments of the coordinates.

**In some cases, measurements may be included in equaliza-
tion which are not reduced to the centers of observation points,
but the coordinates obtalned are corrected for values of u, v,
w after completion of equalization.
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case of laser observations) are recorded during observation. .
Such parameters may be: variation of signal frequency receilved
from the AES, compared to some reference frequency of the ground
observation point; phase delay of the signal relayed by the AES;
and phase difference of the signal received by two spaced anten-
nas. The following may be obtained from these measured para-
meters: in the first case — the topocentric radial velocity of
the AES and the difference of distances to two positions of the
AES; secondly — the range to the AES; and third — the angle
between the bearings from the AES to the antennas.

In the process of measurements, the signal coming from the
AES, after a number of transformations, is usually fed into the
recording device, which glves the corresponding numerical charac-
teristic. Further processing of observations consists in decoding
the readings of the recording device, calculation of the prelimi-
nary values of the measured parameter from the numerical charac-
terlistics, and their elimination by equipment corrections and
corrections for refraction in the atmosphere, ionosphere and
troposphere. The nature of numerical characteristics and the
method of preliminary processing depend on the method of signal
transmission and the receiving apparatus used.

The distance p to the AES is obtained directly as a result of
laser observations. However, this distance is related to specific
values of atmospheric temperature T and pressure pe. Therefore,
during preliminary processing, it is corrected by corrections /42

—

for AT = T - Ty and Ap = p - po

__atbAp AT It cH :
b= sinh4+108ctgh °* (13.1)

where a, b, ¢ are constant coefficients; T and p are ;he,temper—
ature and pressure measured at an observation point at the moment
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of observation with an accuracy up to 0.1° and 0.2 mm Hg,
fespectively, and Ty and po are the initial values of the same
parameters; h is the angular elevation of the AES above the level
of the observation point; and H is the heilght of the observation
point above sea level.

Moreover, correction for equipment delays 1s introduced into
the measured range. If necessary, the measured range is reduced
to the center of the obervation point by formula

cp=ucosy-+vsiny+wsind (13.2)

The recording devices of Doppler equipment usually yield
the numerical characteristics, equal to the Doppler frequency
shift within a specific caleculated time interval.* As already
indicated above, this shift is proportional to the difference of
the distances between the positions of the AES at the beginning
and end of the computational interval. Therefore, preliminary
processing 1s reduced.to calculating the difference of distandes
Ap within the calculated time interval from the numerical charac-
teristic N, or to obtaining p — radial velocity, which may be
accomplished by dividing the difference of the distances by the
calculated time interval. Moreover, in view of the non-linearity
of variation of radial velocity, the value of B obtained will not
be related to the average of the calculated interval. The values
of Ap and 6 obtained should be corrected for refraction of the
radio beam in the ilonosphere and troposphere and for the relativ-
istlc effect [25]. The latter two corrections are sometimes
disregarded [47], and two coherent frequencles are used to

#For example, this interval is equal to 10 seconds for the
French Diadem satellite.
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eliminate corrections for the lonospheric refraction from the
satellite. Thus, for example, the Diadem satellite emits two
frequencies: Fjiso = 150 MHz and Fuoo = 400 MHz. The frequencies
received at the observation points are equal to

_ ) "

Ja00 =F4o? +AFy,+ —1,:4—0;—“1‘ &1

. k .

fxbo:Flso’nLAFlso’f‘m:Sz» .
where k/F 18 correction for lonosopheric refraction of first
order; Fy,o0 and Fyso are the emitted frequencles; f490 and fys9
are the frequencies used; AF400 and AF3s¢ 1s the Doppler fre-
quency shift; and €3 and e€; are corrections in frequency for
different equipment and external factors.

The frequencies in the receiver are equalized and a mixed /U
frequency 1is fed to the recording device, equal to fuoeo -
(3/8)f1s50, free of the effects of ilonosopheric refraction

3 . -9 \ k
. —— = =) y — e .. [ R —
f400 8 F]SO r400 l AI 400 [iA (F400 i AFJOO) {- [,'400
? k

55 7, o e
+- &+ &= ‘é‘,; (Fg00 + AB500) - 1 - &
5 Faoo T ,

One of the important stages of preliminary processing of
Doppler measurements 1s calculation of the so-called frequency
substitution error. The fact is that numerical characteristics
N are recorded at ground observation points, which are equal to

N=C(fAt—f At),

where C is a coefficient dependent upon frequent multiplication
in the ground equipment; f is the frequency emitted by the satel-
lites; f' 1s the frequency of the standard generator at the
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observation point; At' =,10$ is the measured interval used to

obtaln a single numerical characteristic; t'f and t'D is the time

of the: beginning and end of the measured interval at the obser-

vation point; tf and tD are the corresponding t'f and t'D time of

the beginning and end of frequency emission from the AES.

Frequencles f and f' are not known precisely due to instabil-

ity of the generators, but only their nominal valueS‘qﬁ'and f”H

are known. Therefore, the following correctlons should be intro-
duced into the measured value of N

= - L - ] ]
Af (f ')At (fn. f n)At .

f

The difference of (fn - f'n) is called frequency substitu-

tion or the frequency pedestal. Because of the slight decrease

in frequenciles of the ground and on-board generators durlng small

time intervals, 1t is assumed that correction of frequency substi-
tution Aff is constant during the measurement session. This value

is calculated 1f it cannot be determined by the apparatus method,
simultaneously with preliminary refinement of the orbital para-
meters of the AES.

If necessary, the derived values of Ap should be corrected
for reduction to the observation point center by the formula

' Caziy = u (cosy,— €0S ;) - v (siny,— siny,) - w (sin §, -- sin .52),

14. Processing of Time Recording Data

An independent process of preliminary processing is calcu-
lation of the time of observation of the AES.
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Only simultaneous (synchronous) observations of the AES from
two or more observation points are used for constructioh of spaée
triangulation. Synchronization of observations 1s provided by '
transmission of a brief light flash or, in the case of observation éﬂﬂ
of passive AES, by reduction of the time-overlapping observations
to a single moment, called the synchronocus moment.

The time of photographic observation of AES at the observa-
tion point is understood as that moment to which the calculated
equatorial topocentric coordinates of the AES are related. This
time is: '

— the average moment assumed for processing the star expo-
sure when observing the light flash of an active AES by fixed
cameras; and the selected synchronous moment when observing
passive AES;

— the moment of transmission of the light flash from an
active AES during observation with star-tracking cameras, and
the selected synchronous moment during observation of passive
AES.

The time of radiotechnical observations at a given observa-
tion point is understood as the moment to which the measured
parameter 1s related. For example, this time for Doppler measure-
ments 1is the middle of the calculated interval of frequency
reception.

When processing any time recording data at the observation

point, the scale of the instrument recording time must be com-
pared to the radio signals of precise time.

64



‘ Since the precise time signals are transmitted in a uniform
atomic time system, additional corrections for conversion to the
TU1 system must be introduced. These corrections are calculated
from astronomical observations and are published in bulletins
entitled "Standard Time at Mean Moments of Radio Signal Trans-
missions," published monthly by the All-Union Scientific Research
Institute of Physicotechnical and Radiotechnical Measurements
(VNIIFTRI), Corrections 1 for reduction of the moments of radio
signal transmissions to the TUl system are given in these bulle-
tins for all Soviet and a number of foreign radio stations. 1In
order to convert from a TUl to a TU2 system and from a TAlc sys?

tem, if necessary, additional corrections of Ats (for seasonal

varlation of the Earth's rotation) and (TAl, - TU2) are given.

Due to the fact that radio waves propagate with a finite
velocity, correction for standard time should be added to the
correction of Tp for the propagation velocity of radio waves

d

T, Fxz ~ -
p c !

where d is the distance from the transmitting station to the
obsenvation point, and ¢ is the propagation velocity of radio
waves.

Let us consider in more detall the problem of recording and
calculating the time of photographic observations.

As indicated above, when observing flashes by star-tracking
cameras, the time of productlion of the light flash on board the
AES must be known. A time bureau at the observation points is
optional in this case. For this, highly stable clocks, which
control the operation of the on-board equipment and at the same
time the program for transmission of the flashes [T72], are

65



installed on board geodetic satellites of the ANNA and GEOS type
in addition to the equipment to produce the light flashes. The
radio signals from the on-board clocks of the AES are received
by special ground time bureaus¥* and these signals are compared
to the radio signals of precise timé. Thus, calculation of the
flash time reduces to comparison of three time scales: (1) the
radio station transmitting the precise time signal (T); (2) the
ground time bureau (tH); and (3) the on-board clocks of the
satellite (t.). ‘

t

Corrections for the readings t,, of the time bureau clocks

H
to reduce them to the TUl system will be

A, = T + 1 + Tp + 1, -t

H d H?

where Tq is the signal lag during passage through the time bureau

recelver of the observation point.

Correction for the readings t*_  of the on-board clocks at

bi
the moment of the flash will be
* = ¥ * * N
At o th + At q + T b + 1 3 T
where the superscript (¥) denotes that the readout (correction)
refers to the moment of the flash, and T*p and t*, are the signal

passage time from the AES to the ground time bureau and the delay
of the time signal in the’transmitting apparatus of the AES,
respectively. The time of the flash will be

% = % *
T T b + AT b*

¥This time bureau may be regarded as the time bureau of the
observation point, if it is equipped with highly accurate quartz
or atomic clocks, regulated systematically against the State
time and frequency standard.
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If the flash i1s photographed by a fixed camera, the bearing
from the observation point to the satellite will be rigidly
coupled to the Earth and will not participate in rotation of the
celestial sphere; therefore, angle y will not vary during the
time of observations, whereas angle o varies by a value equal to
the difference in the time of receipt of the star imagé and the
flash. Consequently, recording the moment of the flash image
receipt is not required in this case for space triangulation,
but only the time of receipt of the working images of reference
stars must be known, with an accuracy providing only calculation
of the diurnal rotation of the Earth.

When observing a passive AES, the use of star-tracking
cameras does not free one from the necessity of having high-speed
shutters and time recording equipment. The time of each exposure
of the satellite 1s determined in this case by the clocks at the
observation point. The clocks are compared to the radio signals
of precise time in order to reduce them to the TUl system.

As a result of simultaneous photography of passive AES,
plctures containing 10 or more point images of the satellite are
received at a number of observation points within an overlapping
time interval. The time T recorded by the clocks corresponds to

each such image.

In the case of observing passive AES, this method permits
the coordinates of the AES, uncorrected for satellite aberration,
to be calculated. Introduction of corrections for satellite
aberration into the AES coordinates, obtained by the photograph,
is equivalent to introduction of corrections at moment T,.
Therefore, it is(possible to introduce its own correction for
To for each observation point, equal to
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AT,=-2

where D is the distance to the AES at the moment of observation;
and ¢ is the average speed of light propagation along the path.

The coordinates xo, yo of a fictitious flash are calculated
for each photograph from moments T and the observation point
images of the AES measured on the coordinate-measuring machine.
It 1s sufficlent to use an approximatly by the least squares

method with a third-power polynomial
cx=ay+a, T 4 a, T3} a,T3,

Y="bo+- b7 b, T2+ by,
Finding coefficients a, and 7, (1 =0, 1, 2, 3) and substituting

synchronous moment Ty for T, we calculate x¢, yo — the rectangu-
lar coordinates of the flctitious flash at the synchronous moment
of time.

- When processing AES photographs by this method, the exposure
time of the AES must be known with a high degree of accuracy in
order to take into account not only the effect of the Earth's
rotation, but the natural motion of the satéllite as well.

We note in conclusion that all the assumptions of this
section apply to the space triangulation method.
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CHAPTER U4

SPACE TRIANGULATION PROCEDURE

~N
=

15. Measured and Unknown Values of Space Triangulation

The main volume of measuring information for space triangu-
lation are synchronous photographic observations of AES against
the background of the stellar sky. Angles y and §, obtained from
preliminary processing of these observations, are taken as meas-
ured values in equalizing space triangulation.

Moreover, the distances to the satellite p or the difference
of distances Ap to two of its adjoining positions during one
passage, which are also included in equalization of space triangu-
lation, may be measured from separate points. These measurements
are usually made simultaneously (synchronously) with the photo-

graphic measurements.

The unknowns of space triangulation are the coordinates of
the observation points and positions of the AES. The former are
required unknowns, because their derivation is the main purpose
of space triangulation, and the latter are auxiliary unknowns.
In individual cases, the AES coordinates may generally not be
calculated.

The functional dependence of measured values and unknhowns
of space triangulation is established by Expression (2.1), which
in coordinate form in the spatial rectangular coordinate system
has the form
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Ty —X = ATy = Py, €08 84 COS Vip,
r .
Yr—1 1"—"A!/ik=91ﬁ:0053ik SIN Yy (15.1)
Zp— Zl == AZ‘-k == pik sin Sik'

From (15.1), we obtain an expression for the méasured values
directly in terms of the unknowns

At (15.2)

‘Az F33
6, == aroty -~ it
* © VA Faug,

H

pir =V Azl + Ayh + Azh.

(15.3)

The expression for the measured difference of distance is
obtained for the unknowns from the two Equations of (15.3),
compiled for a single observation point i and two AES positions
(k = 1.2),

Ap“h, 2 5= 1’,/—\1'.;1“ -1" A.I/?lu :’ﬂ AS?)“ - 1/A‘T?I.’g -+ Ayizlzg "i' AS?};,.
' (15.4)

16. The Principal Elements of Space Triangulation

Each space triangulation process may be regarded as a com-
bination of a number of geometric elements, the main ones of
which are: the vector connecting the observation point and the
AES position, the plane of synchronization and the vector con-
necting the two observation points.

The orientation of each of these elements may be determined
from the results of only photographic observations without intro-
ducing any other additional data.
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The bearing from the observation point 1 to the satellite
position k is calculated directly from the results of observations
— angles Yik and Gik’ Moreover, it may be characterized by

coordinates 7, m and n of the unit vector of this bearing (its
direction cosines)

Lip, = €05 84 COS Vg
m;y, = cos 8;;, sin i, (16.1)
n;, = sin 6{];.

Each two bearings from observation points i, and i, toward
the satellite position k determine the plane whose vector equation
has the form

(Ri,~Ry,) &dl.s = 0. (16.2)

where ﬁi; and ﬁiz are the radius vectors of observation points

i, and i,; a;lk and dgzk are the unit vectors of the bearings to

the AES. Equation (16.2) is the result of the simultaneity or
the synchronism of observations; therefore, the plane which it
defines 1s called the synchronization plane.

In coordinate form, Equation (16.2) assumes the form

A DX, By AY i,k €y AZis, =0, (16.2")
Coefflcients Ak, Bk and Ck are calculated from the measured values

using (16.1) by formulas

A== My e — Mg,
By = L — Ladtiglo

Cp= mi:hli.k —myldi,.
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The normallzing factor of the equatlon of the synchronization
plane 1s equal to the sine of the angle between unit vectors E;Ik
and a;zk, l.e., to the sine of the angle of intersection of

bearings toward the satellite (Bk). Therefore, the direction
cosines of unit vector Eﬁ, normal to the synchronization plane,

may be calculated from the formulas

M = i b (16.14)

sin By =V 1= (Ligdig -+ Migdnign - i)

If two AES positions (k = 1, 2) were observed from points
1; and 1,, consequently, two synchronization planes and two unit
vectors Pﬁ, normal to them (Figure 14), were obtained. The

vectors Pﬁ! and 5&2 define the plane, the normal of which is the

direction of the chord which connects the two observation polnts

(13 and 1i;), i.e., the direction vector Pi;iz of this chord is

T, == TR, (16.5)

The direction cosines of the
chord in accordance with Formula
(16.5) are calculated by expres-
sions

1

Lty =———
H T sin ), sinfig sin p

(B,C,— C\By),

Figure 14. = 1
g Mg, = sin 3 sin Py sin B, (C34,—C34,), (16 6)
1 — observation point, . 1 :
2 — AES position; 3 — Nt = Samsmprompy (hle—4By).

measured direction.
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where A is the angle between the synchronization planes.

By analogy with y and 8§, angles A and ¢ are introduced which
characterize the slope of the chord to the plane of the equator
(angle @) and in projection on the plane of the equator to the
OX axis (angle A). Henceforth, we shall call them orienting
angles. 1In accordance with Expressions (16.1), they are calcu-
lated by the formulas

A= arctg. A fi?
(LN).,) 6.1

D ;. - arely [—ome—— .
s S\ VIEETFME L,

The equation of the synchronization plane (16.2), after
dividing it by D (the length of the chord), reduces to the
form

iid.

ALy, B, -+ CoNiy, = 0.
(16.8)

Transforming (16.8) with consideration of (16.7), we obtain /50

tg 8ipe sin (N, — i) 4 tg 8in sin (Vi Aiyi) - (16.9)
-+ tg @y, S (Pi0— Yip) = 0.

Expression (16.9) contains the spherical coordinates of
three observation points at which the bearings ik, 1k and 1,1,
intersect the celestial sphere. It then follows from Formula
(16.9) that all three points are located on a single arc of a
large circle, which is the trace of intersection of the sphere
with the synchronization plane. In the literature [41] this
circle has been named the circule of simultaneity. A number of
problems of space triangulation, for example, calculation of
chord directions, may be solved both in spherical and in three-
dimensional rectangular coordinates. In the first case, the
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equation of the circle of simultaneity ls used and in the second,
the synchronization plane equation is used. Taking the fact into
account that there are linear measurements 1n addition to angular
measurements 1in space triangulation, as well as the simplicity of
writing the formulas and calculations, a three-dimensional rec-
tangular coordinate system 1s usually employed in space triangu-
lation. Therefore, use of the circle of spontaneity will no
longer be considered.

These elements, due to thelr orlentatlional nature, facilitate
space triangulatibn, i1f its scale 1s defined by even one basis
-— the length of one of the vectors of the observation point-
satellite or observation point-observation point.

The combination of linear measurements with synchronous
photographic observations permits a direct calculation of the
length of the observation point-satellite vector Pyys @S well as

the length of the vector connecting two observation points — the
length of chord Dij‘

Thus, if the bearings toward the AES position k are calcu-
lated from two observation points — the ends of chord i and j —
and, moreover, the distance from observation point 1 to this
positilion ik (Figure 15) and since

Dy _siny
Pik sinfy; ’
then
Dy=p fl/ 1— ikl je - mupmjp - ngpnjp)? (16.10)
GV L mpM s A n N i)
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' A_; Measured difference
Figure 15. ¢ xk, 1n distance

1 — measured distance. Figure 16.

If the distances to the AES position are measured from two

observation points — the ends of the chord, then
Dy;=V ph A+ 0%~ 20050 (Lielj -+ My, +ngni). (16.11)
If the bearings from the observation points — the ends of

chord 1 and j — toward two AES positions k; and k, and, moreover,
the difference of distances to these AES positioné (Figure 16)
from one of the observation points (1) are calculated, then on
the basis of

sin B, sin fi;,,
Ap == pin, — Piny = Dy ( Siufy, S, ) ’
we obtain _
V (1—cos2 B, ) (1—cos2B, ) v
D[[ =Ap; . £ L,
V (1—cos? fiy,) (1—cos? )V (T—cos? f, ) (1 —cos? B, (16.12)
Whe]?e ; ﬁk‘ = li’“ljkl ‘*‘ ’n“(l”lj’l‘l "1.h ni’nnj’ll etc .
Cases are possible when the components of the observation /51

point-observation point vector are included directly in equaliza-
tion of space triangulation as "measured" or "fixed" wvalues.
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The value of these components may be obtained, for example, by,
processing geodetic measurements, made on the Earth's'surface’
(the basis of space triangulatlon), or from a previously adjusted
space triangulation network.

The relationship of these "measured" values — the orienting
13 to the

unknowns of space triangulation may be represented by expressions
similar to Expressions (15.2) and (15.3)

angles of chords»!\i'j and Qij or of the length of chords D

A)r“, .

Aif = arctg —A—r »
[¥]
®. — arcto AZij (16.13)
.= QI T ITIITIIIITTT
iR ATy

Dy=V AKX AYE 4 025

Similar to the manner in which the measured bearings of
ordinary triangulation form triangles, permitting sequential cal-
culation of the coordinates of triangulation points and forming
the triangulation network, the combinations of measured values
and elements of space triangulation form flgures which facilitate
calculation of the coordinates of observation points. Space tri-
angulation may thus be considered as a combinatlion of separate
figures.

We shall consider in detail below the principal types of
figures of space triangulation. In this case only elementary
figures will be considered, i.e., figures which contain a minimum
number of measurements in input data, required for calculation of
the position of the observation point.
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17. Elementary Figures of Space Triangulation, Constructed- /52

From Photographic Observations of AES

Three-Dimensional Angular Intersections

If two AES positions (k = 1, 2) were observed from two
initial (1 = I, II) and one calculated (J III) observation
point (Figure 17), calculation of the coordinates of the point
being determined may be accomplished by sequential solution of
two direct intersections and one inverse angular intersection.‘

In the general case, the
result of errors in observations,
the bearings Bik from the observa-

tion points toward the AES posi-
tions do not intersect. To derive

the intersection formulas, we
shall assume that the bearings do
intersect, i.e., the conditlons

of coplanarity are fulfllled

Figure 17.

(EIIXE;III) an"_‘"os
(plé X Py z) 51 n= 0,
(P11 X P11 e) P12 =0.

(17.1)

The method of satisfying these conditions wlll be considered
in the section on adjusting,calculations,

Based on the solution sequence, let us determine the posi-
tion of the satellite k = 1. For this, we write the condition

of the sum of three vectors _ _ _
Diy+p:+p0 ;=0
(17.2)
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or in projections on coordinate axes

(X1—X11)+ Py €05 ¥y 1 €08 8y, — Py, €OS ¥yp, €08 Gy, =0, (17.3)
(Y1~ Y1)+ py, sinyp, cos 8ll_pn1‘“11'?111("(’561“?O’
- (Z1—Zyx) +py, 5in by pyy 1 sind; , =0.

From the solution of any two equations (for example, the

first and second), we calculate the distances from the observation
points to the satellite

\

-

' p“=[(X”——X,)sinyu1—(Y,,—Y,)cosy,“]secﬁl'lcoscc(y“--ym); |
Copga= (X=X siny, — (Y= Y cosy,l X (‘17..14)

% secyy, cosee (Y, — V1)

The third equation of (17.3) controls the calculation.

We obtain formulas directly from Equations (17.3) to calcu~ /5
late the satellite coordinates.

&y == Xy~ Py €08 Yy, COS 8y 3= Xy Prr 1 €08 Y1y, €05 8y 13
Y= Yyt pyy iy, €088 =¥ y-bpyysinyy 008,55 (17.5)
’, . ) .
2y = Zy-k Pyy SN Oy == Zyy o+ Pyp g S0 -

Instead of calculating the values of P11 and Pry1s We may,

by eliminating them from Equations (17.5), obtain formulas for
calculating the satellite coordinates in the form

Yu—Yr+X gy —Xntg v

x‘ =

. tgyri—1g v ’ .
y, == Xy—X+Yetgyi—Ynetgvia , |
! ctg yr1—ctg Vi1 : (17.6)

zy=Zy+ Dz secyy tg 8y == 2y Ay cosecyr tg 8y

. 2y = Zyy + Aeyry sec yyy, tg 81x 1 = Zn -+ AY i coces yy, tg 811
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The last formula is for control of the calculations. It 1s
obvious that the first two formulas of Expression (17.6) are
obtained as formulas of .plane intersection in projection of the
three-dimensional construction on the equatorial plane. If the
angle of intersection in the equatorial plane (y;;1 — Yp1) is

too acute or obtuse, we may obtain similar formulas from (17.5)
by projection of the entire -structure onto planes X0Z or YOZ.

The coordinates for the second position of the satellite
are calculated in a similar manner, and for this, it is sufficient
to replace subscript 1 by 2 in Formulas (17.5) — (17.6). From
the calculated coordinates of two satellite positions, after sub-
stitution of subscripts I and II by 1 and 2, and also 1 by II in
Formulas (17.5) — (17.6), we obtaln the coordinates of the obser-

vation point being determined (X Y

111° Y111e Ze1r)-

The time of each observation is assumed to be known in the
construction considered. Of special interest 1s the special case
of a construction, when the flashes of an active satellite of the
GEOS type are observed, and the time of flashes are unknown with
the required accuracy and, consequently, the angle y for the
moment of the flash 1s unknown. In order to use such observations
for space triangulation purposes, it is necessary to either fix
the time of star exposures, which 1s possible when the cameras are
operating in a fixed mode, or to calculate the right ascensions
of the flashes at the moments their images are obtained, for
which the cameras should operate 1n the star-tracking mode (see
Section 14). 1In the first case, the calculations do not differ
in any way from those considered above. In the second case, the
moments of the light flashes must first be calculated. For this,
the first two equations of (17.1) may be used. After simple
transformation of the first equation of (17.1), we have
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acos Sy--bsinSy-Fe =0, (17 -7)

where

a = tg 8y 1 8in (Ag 1 —Ogr1) — 8 Oy 2 S (Ar ;1 — g y),s
b = tg 8;, cos (Ay 1 — g1 1)—1g Oy1 1 €08 (Az ;r—11)s

¢ =sin (g 4 —%;,) tg Py 10

’

From the solution of Equation (17.7), we calculate the value
Of Slo

8= —-arcsin(% cos q))—-q.:. -(17'8)

where
e v\[ a
@ = arc gT .
The time of observation of the second AES position, S, is
calculated in a similar manner from the second equation of (17.1).

After this, the coordinates of two positlons of the satellite and

of the point being determined are calculated in sequence by the
method of three-dimensional angular intersections,

It is easy to see that each position of the AES must be
observed from not less than three observation points — two
initial and one calculated — during transfer of the coordinates
with intermediate calculation of the time of the flashes. Con-
sequently, the construction of the elementary figure of space
triangulation shown in Figure 15 1is compulsory in this case,.
unlike observations with fixed time, when, as will be shown below,
the coordinate transfer is also possible through observation of
the AES positions from two points.
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Let us note the possibllity of
calculating the coordinates of the
observation point being determined
during observation of AES flashes

.at this point by fixed cameras in
the absence of a time bureau. In
this case, the measured values .
should be assumed to be only angles
§ and, in order to determine the

- point, 1t is necessary to observe
four AES positions from 1t, whose
coordinates are calculated by obser-

vations from initial observation points. The formulas required
for calculating the coordinates may be obtained from the four
equations of (15.2), compiled for measured angles ¢.

.Figure 18.

Intersection of Synchronization Planes

Depending on the mutual distance of observation points, the
nature of satellite trajectory, visibility conditions and a number
of other reasons, it may be that each position of the satellite
is observed simultaneously from two points only: the calculated
and the initial ones. Such a construction is shown in Figure 18.

The previously considered method of obtaining the coordinates
of the observation polnt being determined by ﬁhree-dimensional
angluar lntersections cannot be used in this case. Let us write
the Equatibns‘(16.2) for three synchronization planes, formed in
a single construction plot,*

(Prr1 X E’m_x);‘b-n ..o, (P12 X Pur o) Dir =0

[Py % Pl - [Pri2 X priral
(Prs X pira) Dimy _
= = &)

lprs x prxal

+

¥The initlal observation points are denoted in the equations
by subscripts I and II, the calculated observation polnt — by III,
and the AES positions — by 1, 2, 3.
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or in coordinate form

where

A1XIII + B, Y1+ CyZm -+ W, =0,
A Xy -+ B Yy -+ CoZun -+ Wy =0, (17.9)
A3XI[I '%‘ 7}3YI[I —i»- C3ZI[1' _;_ W3 o 0.

W, = A X, —BY;~CZ,
l\’:1’ 2, 3
i:"—II at 'Vzia

" i=T1 at v=2, 3.

f

We obtain the coordinates of the observation point to be
determined from solution of the three Equations (17.9), in which
there are three unknowns.

Angular Intersection of Chords

If two positions each of the AES are observed from the ends
of each bearing, connecting the initial and calculated points

ks

K3
* Ky
%

ig

Figure 19.

(Figure 19), to solve the problem we may use
the bearings of the chords between the initial
observation points 1; and i;; and the calculated

observation point JIII' To calculate the bear-

ing of each of the chords (orienting angles),
connecting two observation points (for example,
iI and iIII)’ we write the conditional equations

of the synchronization planes resulting in this construction in

the form.
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or

A1L1m +BMini+CiNimr=0
" ALy -+ ByMy i+ Co Ny = 0. (17.10)

Taking the fact into account that the directilon cosines L,
M and N are related by a single condition (L% + M? + N2 = 1), it
is sufficient to find two of them, or two of their ratios* from the
solution of Equations (17.10). Having divided Equations (17.10)
by one of the unknowns, known to be different from zero, for
example, by N, we obtain ‘

A (F Do+ 5B (1{)”“ =0,
4 (—J{JV_)IIII (1{ )

(17.11)

I III

We find the ratios of the direction cosines from the solution /56
of Equations (17.11) and, taking the fact into account that

L=cosDcos A,
M = cos D sin A,
N_:—-sin D,

~ we calculate the Orienting angles of the chord

Aj qp1 == arctg [(_i{_)x 11(1 (%)I HI:\ ’
Prun=arctg [( )1 111 + ( N )I m]—% :

(17.12)

Angles AII 117 @04 @11 prps which characterize the direction

of the chord iII _— JIII’ are calculated in a similar manner.

¥Instead of the ratio of the direction cosines, in a number

of papers the ratios of coordinate increments are calculated,
which 1s the same thing.
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Expressions (17.11) and (17.12) acquire a somewhat different
form when divided by L; |qg # 0 or Mi 7171 # 0.

The coordinates of observation point jIII being determined

may now be calculated from the formulas of three-dimensional
intersection (17.3) — (17.6), substituting in them the values
y and 8, respectively, for A and 9.

18. Elementary Figures of Space Triangulation, Constructed

from Combinations of Photographic, Doppler and

Laser Observations

The elementary figures for determination of the position of
observation points, formed by combined observations, are very
diverse and may be both simpler and more complex than the figures
constructed only from photographic observations.

If the elementary figures of space triangulation, considered
in the preceding section, provided only synchronous photographic
observations, they may also contain bearings obtained from
asynchronous photographs when combining photographic observations
with measured distances or the differences 1in the distances of
the figure.

Let us consider individually the elementary figures for
determination of AES posltions, and then — the observation points,
since 1t would be very cumbersome to present all pbssible combi-
nations of simultaneous determination of AES and observation
point positilons, which would only make it difficult to solve the
problem.
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Linéar-Angular Intersections 1in Space

The simplest will be the elementary figure formed 1f the
direction (angles y and §) and length (p) of the observation
point- satellite vector are determined (Figure 20).

The coordinates of AES position may be obtained from the
formulas of polar intersection in space:
zy, ==X~ py, €08 8y, cos yy,

Y=Y+ Py c0S 8y Sin vy,
Zp=2Z; Py, Sin 8. v (18.1)

On the other hand, if the position of the AES 1s known, we obtain
the coordinates of the observation point from the same formulas.

A modification of the above-considered elementary figure for
determination of AES position 1s the variant where the direction
is measured from one of the observation points (1ii) and the dis-
tance to the same position of the AES (k) is measured from the
other point (12) (Figure 21).

. Ky ok
.
i : X\
o \/
, . R : ol

Figure 20. Figure 21. Figure 22.
1 — known position
of AES.
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In this case, to calculate the coordinates of the AES, we
may complle the following system of equations:

zp — X, 4+ Piglig =0,
Ye— Y, + Pisemige =0, (18.2)
Zp— Z‘i: +- Pipliyy = 0,

(T~ X0)* -+ (e — Y3, + (2 — Zi)? = 0.

The unknown distance pilk is determined from solution of

this system of equations, along with the coordinates of the AES
poslition. If the direction toward one unknown position of the
AES and the distance to another 1is measured from the observation
point being determined, the elementary figure (Figure 22) permits
calculation of the position of the observatlon point by llnear-
angular intersection by resolving the system of equations similar
to the system of (18.2), where the subscripts 1,, i, and k should
be replaced, respectively, by ki, k2 and j.

Finally, if the length and direction of the chord connecting
two ground points 1 and jJ are calculated, and the position of
one (i) is known, the coordinates of point j are calculated from
the formulas of linear-angular polar intersection:

Xf = X‘ + DU cos (I)if cos A»lj!
Y;=Y;-tD;;cos @y sin Ay, (18.3)
Zi == Z‘ -l- Dl] Sin q)"j-

N
\J1
o

|

Linear Intersection in Space

Let us consider the case of determining the position of an
AES, when the directions from the observation points to the AES
are not measured, but three distances to the position of the AES
are measured (Figure 23). Then, obviously, the position of the
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Figure 23. Figure 24. Figure 25.

AES 1s determined by linear intersection and to calculate the
coordinates of the AES we will have a system of three quadratic
equations

(xk - "X’ix)g -l!_ (.I/k - Yix‘)z +(:k - Zix)z = p?:ha

(T — X)) 4 (Y — Yi,) (2 — Z1,)2 = plj '
2 3 iz . i, ishs 18 . 1
(xk_Xl'a)a'}_(yk——)ril)‘“;_(zk_Zia)zzp?ak' ( )

A completely similar figure may be used to obtaln the coor-
dinates of the observation point, if the distances to the three
known positions of the AES are measured from it.

Figures for Determining the Position of AES from Directions
and the Differences in Distances

When combining the directions measured from the observation
points with the differences in distances to the two AES positions,
the elementary figures should permit simultaneous calculation of
the coordinates of both unknown positions of the AES.

Two types of such elementary flgures containing two each
bearings toward the AES positlions and two differences in dis-
tances from two observation points to the AES positions are
essentlally possible, differing by the fact that in the first
case (Figure 24) the directions are measured from each of two
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observation points to one of the AES positions, and in the second
case (Figure 25), the directions are measured only from one
observation polint to both AES positilons.

The coordinates of the AES positions 1in the first figure
determine both the coordinates of the ends of vectors Bilkl and

Eizkz from Formulas (18.1). 1In this case, the unknown values of

thellengths of vectors pilkl and pizkz are determined from the

solution of two quadratic equations, compiled on the basis of the
cosine law

. (P22 -t-Ap;)2 == p 1 - Di,i, — 2044 D, (Ligidyy - Miimg, - Nigigng),
(P11 + Apy)® == pha-t+ DY, — 2020 Diyiy (Liyislyy -+ M ii,mayy 4 Ny ny,). (18.5)

Similarly, in the second flgure the coordinates of AES
positions are calculated from the same formulas of (18.1) for
vectors pi;k; and.pilkz. The unknown values of the lengths of

vectors pi1k1:and pixkz’ Jointly with the distance pizkz — which

1s unknown but unnecessary for solution of the problem — are
calculated from the same equations of (18.5) with consideration

of Py .k, = Py,k T Py

Cases are possible when photographic observations are com-
bined with the differences in distances, measured from the obser-
vation points, to two AES positions, of which only one is an
unknown (the other is calculated, for example, with the aild of
synchrondus photographic observations alone).

Such combinations of measurements make it possible to con-
slder the elementary figures for determining on position of the
AES, which should be established by three measured values. Three
types of such elementary figures are possible: ’
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Figure 26. Figure 27. Figure 28.

— the direction to one AES positlon is measured from one
observation point and the difference 1n distances to this and
still another unknown position of the AES — from another obser-
vation point (Figure 26). The problem is solved similarly, if
the direction and difference in distances are measured from a
single observation point (Figure 27);

— the differences in distances to two AES positions are
measured from three observation points, one of which 1s unknown
(Figure 28).

Let us consider the figure presented in Figure 26. The

coordinates of the Zth position of the AES may be obtained from
Formulas (18.1), if distance P47 1s calculated. Let us consider

triangles 1j7 and 1kl to calculate this distance. The distance
Pri? piJ and pkj may be calculated by the unknown coordinates of
the kth position of the AES and polnts i and j, and we find dis-
tance pJZ by using the measured difference in distances and dis-~
tance ka. We must now find distance Pyze For this, we apply

the cosine law to triangle 1j1. The cosine of angle 7ij (Y) may
be calculated, because the direction coslines of bearing il are
known (from measured angles y and §), and direction cosines of
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bearing 1J are calculated from the coordinates. Solving the
quadratic equation and discarding the redundant solution, we will

have
Pu = pijcos Y+ V pfj cos® - pf - (0f - B0
COS'll) —'-‘:l"jl““" m,l-m”-[-n,jn”. . (18 .6)
In the case when the dlfference 1n distances and bearing are /60

measured from a single observation point (see Figure 27), calcu-
lation of dilstance Pyz i1s simplified

Pir =Py Ap.

In the case when the difference 1in distances to two positilons
of the AES are measured from three observation points (see Figure
29), to calculate the coordinates of the point we may compile a
system of three quadratic equations of the type

(V@ —XuF + (yf.—Y,-,)2+<zk—ze,)2+Ap.-.)”= (18.7)
= (2 =X P+ (U — Y0 + (5 — Zu, .

Similar equations may be written for observations from
ovservation points 1, and ij.

Figures for Determining the Position of the Observation
Point from the Bearings and Differences in Distances

If we consider that the AES positions are known, combining
the measured directions and differences in distances from the
observation point being determined to the known positions of the
AES produces two types of elementary figures.
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Figure 29. ' Figure 30.

In the first case, the difference in distances to two AES
positions and the bearing toward the third position are obtailned
from the observation point being determined (Figure 29). 1In the
second case, the bearing'is measured to one of two AES positions,
the difference in distances to which has been calculated (Figure

30). '

The position of the observation point is calculated from
the first elementary figure by Formulas (18.1). To find distance
Pyk? two quadratic equations should be solved which are derived

from the solution of triangles 1kl and i1kj from the cosine

formula. In this case, the distance Pyy is calculated simultan- _

eously with distance Pik* Distances Py and pkj are calculated

from the known coordinates. The cosines of angles 1kl and ikj
are found in the product of the direction cosines of the bearings
of their generatrices. For bearing ik, the direction cosines
Zki’ m 4 and n,; are found from measured angles Yikvand Gik’}

taking the fact into account that Zki ="Zik’ My = ~Myp and

n = ~n

ki ik*

The dlirection cosines are calculated from the coordinates
for bearings kil and kj. The distance pij = Pyq + Api, where Api

is the measured difference 1n distances. We have:
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ph - pij— 2.0;'1«0” (blkilk jFmymy, ;- runy ,') == (P - Ap),
b+ PR — 2018081 (Leili 4 my gy +nging) = ¢4,

(18.8)

In the second elementary figure, the coordinates of the
observation point are also calculated from Formulas (18.1), but
~distance p,, 1s calculated by the formula '

oun B i (18.9)

o 2{Ap+ Prt (ks Lier -+ gy mr -+ npinpg)]

Let us now consider a case when only the differences in
distances are observed from the observation point. Then three
distances should be measured in the elementary figure — between
the two pairs of AES positions (Figure 31). To find the coor- .
dinates of the point in this figure, 1t is easy to complle a
‘system of three equations

0= (s + Apy)?
p?l - (pi/n -+ Ap2)21
Pin=(pip -+ Aps)?

or in coordinate form
(X 2+ (Vo g (G5 = (Xpme 2+ (Vi 3P o (Bi— 5
280 VX @ T (Vi Vel (i — )+ Ao, |
(X =2+ (Vi )2 (2~ 2 = (X i 20+ (Vi — Y+ (Zi — 2 +
280, VX =2V F (V= 0 £ (B = 2 4 Dok, (18.10)-
C Kim g (Vo= U)o+ (Zi— 2 = (K= 2, o (V= 4 o+ (Zi— 5,
A28 VK= (Vi Ut (Gt d0d

where Ap;, Apz and Ap; are the measured differences in distances.

A case 1is possible when points k and 7 and m and n will

coincide; the solution of the problem does not change in this |
case. | '

92



In conclusion, let us consider
' an elementary figure which permilts
: 7 o the coordinates of the observation
| j>\~° point to be calculated from synch-
AN { // ronous photographlc observations,
:

o
0/4\/
\

\

N combined with the measured differ-
i ence in distances to two AES posi-
tions, for one inltial observation
Figure 31. point (see Figure 16). This fig-
ure permlts both the direction and
length of the observation point-observation point vector to be
obtained immediately, l.e., in the final analysis, it reduces to
the case of linear-angular polar intersection mentioned above.
Earlier we obtalned an expression to calculate the length of this
vector from a similar figure (16.12). However, it is necessary
in this figure that the positions of the AES form different
synchronization planes, whose intersection permits simultaneous 4§g
calculation of the length and direction of the chord, and at the
same time — the position of the observation point.

It 1s easy to show that in this case we proceed without cal-
culation of the coordinates of AES positions. Actually, to cal-
culate the coordinates of the AES position we can compile four
sets of three equations (18.1) from bearings ik;, ik,, jki, and
Jkz2. In these 12 equations there will be 13 unknowns — the
coordinates Xy ? Vi, Zk;’.xkz’ Yips Zkps Xy Yy and 2, and four

distances Pyy s Pyp.s Py and Pk, The 13%h equation is

obtained with the aid of the measured difference in distances
Ap; =i, — Pir,.

Eliminating the coordinates of AES positions and one of the
distances from these 13 equations by simple algebraic transfor-
mations, we obtain the following system of six linear algebraiec
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equations to calculate the coordinates of bbservation'point J and
three distances

;1 Pir bir, — Pit ik, -+ T — Aplyg =0,

= Yy Paty My = Py My -+ Y — Apmy,, =0,

- % Pir Mk, == Pjy M, +z;— Apn,-kz =0,
— j"l’"pikllikl'_pjklljkl 2= 0, ‘ (18.11)

Yk pi/;lm-zklf .0,'1e177-7',~1‘;1 Y= 0, o

=2 O Py, — Pk, ik, +2;==0.

Selection of Figures to Construct Space Triangulation

We have considered the simplest elementary figures which
permit calculatlon of the position of the AES or the observation
point, i.e., all three unknown coordinates.

Moreover, 1t was mentioned earlier that the figures for cal-
culating the AES position are intermediate from the point of view
of calculating the position of the observation point, because in
themselves the AES positions do not interest us. Moreover, the
figures for calculating the position of the observation points
may be formed_from synchronous observations of AES positions,
carried out over a long period of time.

More complex figures than those which we have considered are
formed in the process of real observations of AES positions from
different observation points. In this case, the number and com-
position of measured values in these figures may permit immediate
calculation of both the AES position as intermediate sighting
targets and the position of the point being calculated, such as,
for example, in Figure 16.
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In some figures, combination of measurements permits (if the
position of the observation points is assumed known) calculation
of the position of the AES alone (see Figure 24) or even not to
obtain this (Figure 32).

4\:::;::_::‘
[ //>(( \
I 7.7 N
/*/ ! ////' \\ \
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Figure 32. Figure 33.
However, other figures may also arise which contain AES /6

positions and those of a calculated observation point, in which
the measured values are greater than necessary for calculation

of the AES position, but inadéquate for simultaneous calculation
of the coordinates of the observation point being determined.
Thus, for example, in each of two figures, one of which is shown
in Figure 33 by the dashed line, and the other — by the solid
lines, there are redundant measurements for determination of AES
positions, if the position of both observation points i and j are
assumed to be known. If observation point J 1s assumed to be
calculated, none of the figures will determine either the position
of the AES nor that of thils observation point. Only by consider-
ing both figures Jointly may the positions of the AES and of ob-
servation point jJ be calculated. '

It 1s clear from the foregolng that figures which also con-
tain redundant information in addition to the measurements deter-
mining the AES posltions, are required to construct space trian-
gulation for purposes of determining the position of observation
points. Therefore, of the entire aggregate of real groups of AES
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observations related among themselves in time, it 1s necessary
to select those figures which contain not less than 3s + 1
measurements, where s is the number of AES positions in the fig-
ure, to include space triangulation in a mathematical treatment.

19. General Principles and Characteristics of Constructing

Space Triangulation

Space triangulation 1is a gemoetric construction, based, as
is evident from the figures forming it, on the possibility of
determining the mutual position of observation points by observa-
tions from them of simultaneous positions of AES. Thus, a satel-~-
lite 1n space triangulation is used as the intermediate high-
altitude sighting target. '

The figures considered 1n Section 17 determine three
principles of construction of space triangulation from photo-
graphic observations.

Sequential solutions of pairs of groups of equations (18.1),
obtained during synchronous observation of not less than two AES
positions from three observation points — two initial and one
calculated (Figure 34) — permits the coordinates of the obser-
vation points to be calculated by the method of angular inter-
sections in space. This is the first principal method of space
triangulation construction.

~
(@)
=

|

Elimination of the unknown coordinates of the AES position
from two pairs of equations (18.1), obtained as a result of
synchronous observation of one satellite position from two obser-

vatlon points, leads to the equation of the synchronization
plane (16.2').
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Figure 34. Figure 35.

Joint solutlon of the equations of not less fhan three
synchronization planes, compiled for not less than two initial
and one calculated observation point, permits the position of
the latter to be obtained. This principle of construction (see
Figure 18) is called the method of planes.

Solution of two Equations (16.2') for each chord between the
initial and calculated observatlon points determines the direc-
tion of each of the chords, and the position of the calculated
observation point is found at their intersection (Figure 35).
This principle of space triangulation construction has been
called the method of chords (closing directions).

Depending on the purposes of creating space triangulation,
three types of construction may be distinguished:
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1. Separate figures used to determine the positilon of
single points, for example, to tie in a local geodetic system
(insular) to a unified geodetlc net (mainland), as well as those
which are integral parts of more complex types of constructions.

N
N

2. - Series used to transmlt coordinate systems for a con-
siderable distance, or to combine very remote local systems into
a unified system with minimum expenditures of labor.

3. Dense nets, used for propagation of a unified coordin-
ate system over a vast territory, or to create a network of
observation points of specific density. ‘

These constructions differ in the distribution and number
of AES observation points. However, they may all be regarded as
a combination of the individual figures forming the space tri-
angulation.

When considering all the problems of construcstion, adjust-
ment, and analysis of the accuracy of space triangulation, two of
its characteristic features should be taken into account. First,
all measurements in space triangulation are carried out only‘from
ground points and no measurements are carried out from the satel-
lite. The absence of direct observations from the satellite and
between ground triangulation points leads to the fact that all
measurements in the space triangulation network, unlike ordinary
triangulation, are unilateral.

Secondly, space triangulation is distinguished by less
reliable determination of individual AES positions than of
observation points. This is quite understandable, because each
instantaneous position of the AES may be observed only from a
specific number of observation points and only at one time.

‘\
o))
o))
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A comparatively small number of synchronous observations of
the instantaneous position of the AES creates a small number of
redundant measurements to determine a given position. And a
large number 6f redundant measurements is accumulated to deter- .
mine the positions of a comparatively small number of observation
points compared to the number of AES positions in a triangulation
network constructed over a conslderable period of observation
time.

As in ordinary triangulation, the problem arises of adjusting
measurements in space geodetlc networks due to the presence of a
conslderably larger number of observations than 1s requlred for
calculating the coordinate points. Adjustment is accomplished
by the least squares method. In thils case, a set of measured
values obtained at the points within a specific period of obser-
vations 1s included in the processing. '

The three possible principles of construction of space
triangulation which we have outlined, as well as their character-
istics, have revealed the different methods of applying the least
squares method to adjustment of space triangulatlon, which will
be elucidated in the ﬁollowing chapter.
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CHAPTER 5

ADJUSTMENT OF SPACE TRIANGULATION

20. Types of Conditions Arising in Space Triangulation. Networks

/67

When adjusting space trilangulation, it 1s necessary to cope
with a number of characteristics which are apparently inherent
only to a given type of geodetic network. We recall that the
directions between the observation points of space triangulation
are determined independently of each other in a unified stellar
coordinate system. Therefore, conditions similar to those of
sums and azimuths (directional angles) may not arise in such a
network. In other words, not one of those conditions which are
combined under the general name of angular conditions in an or-
dinary geodetic network occur 1in space triangulation.

Polar, base and coordinate conditlions are completely retalned

in space triangulation. But besides them, specific geometric
conditions appear in space geodetlic networks which have no
analogs in plane networks — the conditions of coplanarity of
three vectors, plane bundles, and plane sheafs.

A specific type of conditions arising in the figufes of
space triangulation is considered below.

Conditions of the Coplanarity of Three Vectors

In more general form, the condition of coplanarity of three
topocentric vectors AR;, AR, and ARs will be
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| (20.1)
ARAR,AR; =0

or

[;1 - ;'2] [;1 "";3] [’z - "3] =20, (20.2)

where ;i 1s the value of the radius wvectors.

After normalization, we obtain

po =5) (i) Gomia)

R A AT ey (20.3)
or
f':“’;;x.z‘;‘_.s’zz.rx:;o'. o (20.4)
where /68
Q== *-:r;i——:—-iL.
/ l’l“‘rjl

Equation (20.4) is the condition of coplanarity of three
free vectors. In coordinate form, it has the form

F= (20.5)

Lismy g n,

Iy 2 my o '11.2'

ly.3 My 3 Ny 3

This condition is the principal one in space triangulation
and arlises as a result of the synchronism of observation of a
single satellite positlon from two observation points (synchroni-
zation planes) or arrangement of three vectors connecting the
observation points in a single plane ("the plane of three
observation points").
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Conditions of a Bundle of Planes

The direction of the lines connecting two ground points 1is
clearly determined as the result of intersection of two planes.
The condition of the bundle of planes exresses the requirement
that all synchronizatlon planes intersect for two observation
points on a single chord. Each new plane, added to the first
two, will be redundant and, consequently, will lead to a single
condition.

Let three planes be defined by their normal vectors N;(A;B;Cl),
N, (A2B2C2) and N3(A3BsCs). Let us compose a mixed product of
these vectors ‘

V=N, Ny (20.6)

The mixed product 1s numerically equal to the volume of a
parallelipiped, constructed on vectors N, N, and N3. However,
if the planes belong to a single bundle, thé parallelipiped
degenerates 1nto a line and, consequently, V = 0. Turning to
the coordinate form of a mixed product, we obtaln the conditional
equation of intersection of three planes on a single line

4, B, G,
A2 B2 C2
4 B, C,

V= =0, (20.7)

Condition of the Sheaf of Planes

Intersection of three planes in space clearly determines a
point and each additional plane leads to a single condition,

expressing a requirement for intersection of four planes at a
single point.
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We know that four planes pass through a single polnt when
the fourth-order determinant, compiled from the coefficients and 69

m——

free terms of planar equations, is equal to zero, i.e.,

. A1AB1 C; Dy _
oo 4 e C0a (20.8)
A3 Bs C5 Dy
A, B, C, D,

(=]

Base and Polar Conditions

The conditional base equation arises in the case when two or
more initial or measured sides are contained in a space trilangu-
lation network provided that there is a direct relatlonship
between these sides through a chain of three-dimensional triangles.

As an example, let us write the base equatlon for the figure
shown in Figure 36. Solving triangles 1i1klz and i:kJ sequentially,

it is easy to obtaln an expression completely
k

/E analogous to the conditional base equation
A//</<?22§>\>\\ for plane figures
{ /j ./}4 ,Aj . sin ﬁl sin ﬁSDi I .
"N 12 g/ Fzs‘mﬁm'ij——i—‘:o, (20-9)
§\\ s
‘e N in which B are the angles formed by topocentric
3
—te =t 2 directions.
Figure 36. A
1 — measured base A unique feature of the base equation is

of chord. the condition which arises when the differ-

ences from the observation points to the AES
positions are measured along with simultaneous photographic
observations.
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The polar condltion occurs in space triangulation figures in
the case when there are closed chains of triangles, which begin
and end on the same side. Three-dimensional polar conditional
equations are compiled in a siﬁilar manner as 1s done in geodetic
networks on a plane.

The form of the conditional polar equatlion formally preclsely

~glves the expression obtailned for the conditional base equation.

Coordinate Condltions

Coordinate conditions occur in the case when there are
isolated initial points or systems of them 1n the space triangu-
lation network. A space triangulation figure 1s shown in Figure
37, in which the spherical coordinates of all llines conpecting
the apexes of the given figure are known, where A and 'B are the
initial points, P is the calculated point and k, is the AES
positions. ‘

i

The coordinate condition in
vector form for the figure may be
written

prtpzd-pad-p,=AB.  (20.10)

This condition means that the
coordinates calculated from point
Figure 37. A along the course line Ak,Pk3B,
precisely colncides with the -
coordinates of 1nitial point B. For the coordinate increments
the following equatlons must be satisfied.
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n-1

Xp—Xa==AX:= Z LD
1

ﬂ:}
Yp—Y =AY = 2 mypu,
. {

n-i (20.11)
~ Zp—Za —AZ = 211 Rk

where ‘1! is the number of the observation point (1 =1, 2, ..., N)
and k is the number of the AES position (k =1, 2, ..., n = 1),
from which the conditional equations for the coordinates are
easlly obtained
n-1{
Qu= 2 Lip0i— AKX, =0,
‘ .

’ Il:—i

(Py:'.‘ 2‘:7n.,-kpik——A)’,;_1'—: O" . (20.12)

n-t

Al ,
$z== >;=’ HppQpp AZn. 17= 0.

Selection of Conditions

Most conditions arising in ordinary geodetic networks have
the property of equivalency or interchangeabllity, which leads
to the selection of the simpler in form or that contalning the
least number of unknowns compared to other conditions, from
several relafions linking any group of measured values.

The conditions arising in a space triangulation network also
have the properties of equivalency.

The condition of a sheaf of planes, which expresses the
requirement that the synchronizatlon planes intersect at the
points of AES observations, 1s more universal from the geometric
point of view. Actually, synchronization planes must pass through
the initial points (the three terms of the equations of these
planes are calculated under this requirement). Moreover, the
planes .constructed with the aid of measurements from some calcu-
lated point, after adjustment, form their own sheaf with the
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center at this point. Thus, after the conditions of sheaves of
the planes in a given network have been satisfied, the polar and
coordinate conditions should be automatically satisfied. 1In
other words, the condition of the sheaf of planes is equivalent
to any other eondition, with the exceptlon of the condition of
base for directly measured sides.

The conditions of the sheaf of planes and the bundle of
planes in turn are equivalent to definition of four and three
equations of synchronization planes, respectively ("the planes
of three points"). Therefore, any conditions of space triangu-
lation, besides base conditions, may be described by the appro-
priate number of planar equations.

However, the planar condition requires definition of the
coordinates of two points through which this plane passes. Con-
sequently, for conditional planar equations, passing through
calculated observation points, it 1s necessary that the coordin-
ates of the latter be expressed by all the measured values, by
means of which these coordinates are calculated, beginning from
the initial points. This would lead to an extremely cumbersome
and irregular form for each planar condition. In order to use
single type and simpler planar conditions during adjustment,
the coordinates of the calculated points may be regarded as
additional unknowns (parameters).

The preliminary estimate of accuracy 1is another thing.
The values of the free terms of conditional planar equations
with additional unknowns depend both on measurement errors and
on definition of the preliminary values of the unknowns. It
is clear that the free terms of these equations may not be used
to analyze the accuracy of the measurement results in terms of
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the resilduals discrepancies of the geometric conditions. Condi-
tional equations without additional unknowns must be used to
analyze accuracy.

21. Adjustment of Space Triangulation by the Parametric Method
(the Method of Direct Measurements)

When adjusting an entire set of measured values of triangu-
lation by the parametric method for each measured value, connec-
ting the position of the observation point to that of the AES, a
correction equation is compiled in which correction for the
measured value in explicit form is expressed by corrections of
unknown coordinates (parameters).

The Correction Equation for Angles y and 6§

The functional relationship of angle y to the geocentric
coordinates is defined by Equation (15.2).

After it has been reduced to linear form, we will have

dy ay
?m}ﬂW““uug(zr—A‘) *aq‘if+?_*Wk+’ (21.1)
0 ) > b4
+55 ‘ dX,+ TYVT ay,.
Let us introduce the notations /72

dr, =,
dy, = ny;
dX;=§;
ay;== 1]1';

si=V (@, — X+ (- Y0)? = p,kcosé.k,

__I’
= arotg (2=3L) ~vis
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It is assumed in Formulas (21.1): p 1is the distance from
point 1 to the AES position k; s 1s the projection of this dis-
tance on the coordinate plane XOY (the plane of the equator);

Xo, Yo, X0, and yo are the preliminary values of the coordinates,
and y' and é' are the measured values.

Let us find the partial derivatives contained in Expression
(21.1),

oy _siny __smy
253 s pocosd . b
oy r*cosy’_ cosy’ b
Oy so  petosd’ !
. ‘_(‘{Y——: . Sin ,"' N Sin‘y' (2102)
0X; se  pocosd +a,
dy _ "cosy’ cos y’
DI -P-o cos& +b.

Taking into account Formulas (21.2), Expression (21.1)
acquires the form

Uy, == @&+ b, — a5 — oM+ l;fik; s
Welght Py, 3

The coefficients of the correction equations are the func-
tions of spherical coordinates y and §. In some cases, it is

feasible to represent them in the form of functlions of direction
cosines of direction ik.

Taking into account the known relations (16.1)
l=cosbcosy,

m=cos §siny,
n=sin§,
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it 1s easy to obtain

siny:.;—‘?:l—.;'f-;—’i?-,

siné=n, (21.4)
' cosy,z—*ﬁq__-—'m_?—,
cosd =V 1—n®

We substitute (21.4) and Equation (21.3) with consideration /73
of (21.2), and then we obtain the correction equation in the form

e (B Iy — m By 1) L L, (21.5)

U
Vlz{

Angle § as a function of rectangular coordlnates 1s described
by Equation (15.2). Reducing it to linear form, we obtain

Vo, = axk e+ 55 a_/k M+ a‘;' Gt Ef*' (21.6)
a8
+~—'0_Y1 N -:_TA‘-C" + L5,
where ¢ = dz,
1 --arcttr( 2 —2i -8
8 Ve ity %

We find the partial derilvatlves

95 —cosy'sing .
ozp Po n
85 _ cosy’sind e
aX;  po -7
a8 —siny’sin &’ . .
C7E
aa;z sin ypqu — (21.7)
i 0 ’
a8 cos §’
O -e;
dzp Po +
6 _ cosd —e
Z; po
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With consideration of (21.7), Expression (21.6) 1is written

oy, = — oby— dn, — el By dy + oLy -+ Is,; Welght bps,,. (21.8)

If the partial derivatives of (21.7) are expressed by the
direction cosines of a given straight line 1n space, using
Formulas (21.4) for this, Equation (21.8) acquires the form

n ’ .

v%?m(—‘l&-mflz—{-ZEk—i—mﬂk) - (21.9)
V1i—=nt ) -
"‘_“p—n* (G—C)+ sy,

The weights of the measured values for their correction
equations are calculated from the relations of the squares of the
mean square errors of the measured values. Taking the fact into
account that ms = mY cos § holds as a result of astrometrical

processing, the weights of the correcting equations of angular /T4

measurements may be written in the form

C
P6—~';;:%‘,

C

m¥sec§ *

, (21.10)
p‘." =

If the observations are made by cameras of the same type,
they may be considered balanced, and assuming.pg = 1, consequently,
C = mg, we will have Py = cos? §.

The correction equation for y is not compiled if the time
of observation of a passive AES is not recorded.
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If the errors of recording time (ms) are known, the weights
of the correction equations wlll be calculated as
c
py= sec2 dm3 - (14 h2) m3

and

c (21.11)
ps =

GRS
where k and k' are tﬁe componénfs of‘the angular topocentric
speed of motion of the AES along axes o and 6.

Angles y and § should be regarded as correlated due to
their derivatlion from astometric processing of the same photo-
graph and thelir reference to a single moment. However, the
results of adjustment hardly change if this correlation is
disregarded.

Cases are possible when the dlrection of the chord between
two points, obtained, for example, from ordinary triangulation,
is used as the measured element of space triangulation.

In these cases, for angles A and ¢, which determine the
" direction of the chord, we may complle correction equations
exactly llike those for angles y and §

Uy = a%f—‘bm + a&; + bn; - lA,j )

: : : (21.12)
vq)‘i = Cgl - d1li - eci _*- CE}' + dn] —I— egi ”{* ld’ii’

in which the coefficlents and free terms are calculated from
Formulas (21.1) and (21.2) replacing Yigo Gik and ik and the

index k, respectively, by Aij’ Qij’ DiJ and J.
The direction of the chord may also be the initial direction.

In thls case, the corresponding number of unknowns may be excluded
from adjustment. However, to retain uniformity in adjustment,
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it is feasible to compile correction equations for initlal direc-
tions as well, giving to them such a large welght that they will
almost be equal to zero as a result of the correction adjustment.

The Correction Equation for Distance

Reducing Equation (15.3) for measured distance to linear
form, we have

. op a9

ap
o OP I L 190 9 n
Pein ™ iy S Gye Ve Bz G X, &

ap .. . dp . . ) (21-13)
—',.' 5)‘»‘: "i =4 —‘)_ZT gl o l?ik’ . [};;,{1

dp

where

Loy == 1/(%“ X -+ (IJ/e_’*Yi)ﬁ T (5= Z:)5 — Pik-

The partial derivatives of function p have a very simple

form
o _ap—Xi Ly
8z pie ®
O . me=X g
axX; Dk ke
dp yp—Yi . .
i P it y
o wevi (21.14)
a),‘. ‘,lk == *iky
ap 2p—2; .
0::—1; B Pik = Tk
ap . zk~é,
Zi ek i

Having substituted (21.14) into Expression (21.13), we
obtain

Vosp = Linke -+ miny - 2inle ~
—l;k§l~ In{,"l],-——n-;k?;[-'.r; l?ik’ (21.15)
2 ., - m?.p2
Pp=—=% oOr at <¢=ms We have p,=—-
4 ?
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If the relative error of distance measurement 1s
m, . B m§
. T :::A?{pa then P ‘"- "']T[(_,{ .

r

To establish the scale of space triangulation, it may include
the bases of the "space bases" between the observation points,
obtained from a complex of highly accurate linear and angular
measurements, made on the Earth's surface. The correction equa-
tions for these bases are included in adjustment of space trian-
gulation by the parametric method with a welght corresponding
to their accuracy. In the case when the base is taken as the
initial value, they are formulated in the séme manner as those
wlth the initial direction of the chord.

The correction equation for the measured base corresponds
completely to Expression (21.15). However, the unknown values
in it, instead of corrections for the position of the AES, will
be corrections for the coordinates of the observation point, and
the coefficients with unknowns will be the direction cosines of
the chord, connecting the ends of the base.

~N
(o)

The Polish_gebdesist Y. A. Zelinskiy [22] proposed using
the distances between AES positions, located on a single orbital
revolution, as measured values to lncrease the rigidity of space
triangulation and to establish its scale. These AES positions
were observed simultaneously from the space triangulation points
by the photographic method. The value of the distances (the
celestial chords between the AES positions) should be determined
by the orbital parameters obtained independently of these obser-
vations, on the condition of their small differential variation.
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The correlation equation for measured bases of celestial -
chords obtained will have the form (21.15). ' However, the unknowns
will be corrections for the coordinates of two AES positions, and
coefficients 7, m, and n will be the direction cosines of the
celestial chord.

The correction equation for the measured distance as the_
base between points in the adjustment of space triangulation by
the parametric method may also be used in a single aspect. We
know that the heights of points above the reference ellipsoid
are known with a considerably higher accuracy than the geodetic
coordinates of points on any surface of this elllipsoid. Conse-
quently, the preliminary values of the coordinates of the calcu-
lated points of space triangulation will contain one component
which 1is more accurate than the two others, and, it is desirable
that the corrections of 1t from the adjustment be less. During
adjustment in geocentric coordinates, it is simpler to do this
by using the following procedure. ’

The length of the geocentric radius vector of the point
being determined is calculated from its preliminary coordinates.

The center of the Earth (coordinates X = 0, Y =0, 2 =0)
is taken as the additional initial point, and the length of the
radius vector — as the "measured base" between the center of
the Earth and the point being determined. When establishing the
measurement weight, the accuracy of deterhining the altitude of
the point above sea level and the accuracy of the altitude of

the geoid above the ellipsoid at this point are taken into
account. ' ' ‘

Correction Equation (21.15) in this case has the form

vpy == L& -+ M, + N3+ g, (21.16)
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where

bny =V XL+ Y3+ 28— (N H 4 k) VT = (2 — e0) sine I

or

vp; = a8+ b, -+ c¢tit+1n;, . (21.16")

where
(ll——b‘~_1_~Tt + R; Tl R
1-“‘ i RiT‘
"R, Tar(—em
. a]fi—-—cu
V= (Xiiyy 2
' -ln,—-R°(1—T2)-—(H+h). |

7,

~N
-3

Correction Equation for Measured Difference 1n Distances

To compile the correction equation for the difference in
distances, it is necessdry to reduce Expression (15.14) to

linear form : ,
Ap=pw—"0Pu>

where k and 7 are the AES positions, and i1 is the observation
point. As a result, we will have

aAp 3Ap dAp oAp . dAp , OAp
ax, 5t oYy e -+ G+ axf &+ EPal )

aAp aAp dAp
+ azl .,I ! <7y1 n[’l“ 9z Zl T IA »iy

(21.17)

where

iAo =(V (@ —X - (g — Y+ (2e—Z:) —
—V (x5 — - X 4 (= -Y)? - (— Z:))e— A"
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The values of the partial derivatives will be

IV
ox, T e la=t)
dAp .
oy, =T Mk ma=é,
dAp -
2ok ey =h,
0% ok = (21.18)
arp I dAD o
xR o b
aAp GAp
2P - m, — =
dyp Mg, ayl il
dAp ' aAp
T e T

Substituting (21.18) into (21.17), we obtain the final form
of the correctlon equation for the difference in distances

vag, = — fE&i—gWi— hGi+ Iy -+ maMy - 0L — 1§ —

~ my Wy —ny -+ Lay,

(21.19)

2
ms

with the weight PAf=ﬁ%} or at C::mgpAgzgﬁ—.
2 Ho

Consideration of the Effect of Systematic Errors

When it is assumed that there are systematlc errors of
recording time ét one or several points of space triangulation
(including initial points), their effect may appear and be elim-
inated in the adjustment process. This problem may arise in
observation of passive AES, where the synchronous moment must be
known with high accuracy.

The error ot, of the time recordihg affects the accuracy

i
of calculating the topocentric equatorial coordinates of an AES,
and it may be calculated from formulas o

Ay == ko,i;' A =k'oy, :
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where k and k', as in (21.11), are the rates of change of the
equatorial topocentric coordinates.

If the errors of recording time o, are lncluded as additional
i

unknowns in adjustment of space triangulation, the correction
equations in adjustment by the parametric method, taking into
account errors of recorded time, will have the form

Uy = — ab— b +aby + b +koy L, (21.20)
Vo, = — By —dni—el; + ey T+ el R0y F s, o

The unknown Op will be contained in all error equations,

i
compiled for all AES posltions observed from point i.

Incluslion of additional unknowns ct increases the number of
normal equations by the number of these unknowns.

The unknown error op or °Ap may also be found in the
i i

presehce of systematic constant errors in measurements of p or Ap.

The Order of Adjustment

'~ 'The main process preceding the calculations in the case of
adjustment by the parametric method is establishment of the pre-
liminary values of the parameters — the coordinates of all AES
positions and observation points.

The preliminary values of coordinates are calculated sequen-

tially, beginning from initial points, from measured values of
y and § (and if necessary, of both p and Ap) from the formulas
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of Sections 17 and 18. 1In some cases, when the AES orbit is
predicted with sufficient accuracy, the preliminary coordinates
of the AES may also be calculated on the basis of this prediction.

In case of rough preliminary values of coordinates, adjust-
ment of triangulation may be accomplished by approximations so
that the equalized values of the coordinates of first approxi-
mation are used for new calculations of the coefficients of the
correction equations and their free terms.

The number of correction equations 1s naturally equal to the
number of measurements. Solution of these equations under the
condition [pvv] = min leads to a system of normal equations for
correction of coordinates, whose order is equal to 3(s + P), where
s 1s the number of AES positions observed and P is the number of
observation points to be determined.

Since the AES positions are not related to each other, but
are related only to the observation points,* s is usually con-
siderably greater than P.

Having numbered the unknowns for correction of the coordin- /7€
ates of AES positions first in order, and those for correction
of the coordinates for the points to be determined as the last,
we obtain a system of normal equations, whose form is shown
schematically in Figure 38. ‘

It is easy to see that the system decomposes into groups of
partlally independent equations, and therefore, it is ideal for
solution by the Pranis-Pranevich method [42]. Solution of such
a system of even very high order does not present technical diffi-
culties when using modern computer technology.

- #¥0nly measured differences in distances or "measured" lengths
of celestial chords may connect adjacent AES positions.

118



bl
©w
S,
-

k’ K, Ky }----- Ja

tp3i8ngilind} ipd

[y

. jﬂ
ip i

e
3
v~

k\\\\\\N.

N

FENANN TR RRFARARN

N

Figure 38.

This method of equalization is valid for space triangulation

of any construction.

22. Adjustment of Space Triangulation by the Conditional
Method with Additional Unknowns

Implementation of the conditional method in its canonical
form in the adjustment of angles y and § entails considerable
difficulties. Introduction of additional unknowns simplifies
the compilation of conditional equations. The number of normal
equations in this case increases and becomes equal to N.= r + 3P,
where r is the number of independent conditions occurring in a
~gilven network, and P is the number of ground points to be
determined.
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Since the coordinates of the AES position are lntermediate
data from the point of view of construction and adjustment of
space triangulation, 1t is feaslble to select coordinates of
ground polnts only as additional unknowns. This selectlion of
additional unknowns leads to the fact that three types of condi-
tional equations will be mainly used in mathématical processing:
the planar condition and the base conditions for measured dilstance
and for the difference in distances.¥

The Conditional Equation of the Synchronization Plane

After reduction to a linear form with respect to corrections
for measured values and correctlions for the coordinates of points,
the conditional equation of the synchronization plane (16.2')

Fk == AkAXij —I—BkAYl'j + CkAZ”- == O

is written

Uiy i Caley, + gl + UiV, + 4, (§—E)+ B, M=) +-

_ (22.1)
+Cp (§—8) + W, =0,
where
W, = ARAX° - BiAY 4 CLAZ?,
or - ) .
Uy = —-a—.;,;;- == tg 6,-/: (AA'U COS Vi °“" AY{j S1n 'V[k) — AZ”' cos (?]k - Yik) ,
r - . .
Uy = 5= sec? 6, (A.X,-,-' siny;, -+ AY; qos Vik)s
oF : .
%= tg 8y (AXy; cOS Y -+ AY y; sin pp) -+ AZ;jcos (Vi — Vir)s
aF U : '
oy = = sec® §;, (AX;sinyy, — AY ycosyy,), (22.2)

: ar . .
4 = Fax; & 8;r Sin i, — tg 6y SIN Py

oF

B, = AAY i

= tg ('Sik‘cos Ve — 12 81 OS Yips

ar .
Cr = gaz;; =0 (Ve — Vue).

- *A special type of condition occurs in the presence of meas-
ured directions or bases of chords — conditions of chord elements.
The uniqueness of these conditions is that they are related to
each other only by the unknowns of triangulation.
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If the measurement contalns systematlc errors in the deter-
mination of the time o, conditlonal Equation (22.1) will assume
the form

Uy, -+ ogvey, -+ Oaly, + e — AE — B, — C + At -
+Bn; + CC]'*‘ (oaykei -+ ayki) o, +- (azk/ +agk;) 0;4-W,=0. (22.3)

Such equations are complled for all synchronization planes /81

passing through points for which corrections Ui and OJ are being
sought.

Conditional Equations for "Measured" Chord Elements

If the base of a chord connecting two ground points to be
determined in a space triangulation network is measured, the
base condition will occur in this network.

When using additional unknowns — corrections of the coor-
dinates for the chord ends — the conditional base equation assumes
the form of the correction equation for measured distance.

vp = Lf (& — &) — M (my— ) — NY (¢ — L) + W5 =0, (22.4)

where

Wp =V (AX) + (AY4YF(AZ)° — D}

In the case when the base of the chord 1s measured with a high
degree of accuracy (comparable to the accuracy of the initial
sides), correction of Vp in Equation (22.4) is assumed equal to

zero. A similar situation arises in the presence of a "fixed"
directlon of the chord in triangulation, determined by two angles
¢ and A. In this case, two conditions occur in which the coor-
dinates of the chord ends colncide with angles A and ¢. When
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additional unknowns are introduced, these conditional equations
assume the form of correctlion equatlions for measured angles char-
acterizing the direction of chord A and chord ¢ (21.12), and

differ from them only in the fact that corrections \7 and Ve vanish.

Thus, the conditional equations are written

— afy— b1+ af; -+ b, -+ Wy, =0,

22.
"CE‘—dnl""ecl“'—Cgi—}-dnj+€C’-+VV¢U=0, ( 5)

where the expressions for the coefficients may be found in Formulas
(21.7). |

The Conditional Base Equation for Measured Distance of the AES

In space triangulation constructed from data of simultaneous
photographic observations, the scale of which 1s defined by the
system of initial points or bases, the coordinates of all points
to be calculated may be obtained. Therefore, the measured dis-
tance from an observation point to the position of an AES, the
directions toward which have already been determined, is redundant.

The conditional equation with additional unknowns — the
coordinates of observation points from which the AES position
was observed — may be obtalned in a manner similar to the con-
ditlonal base equation (20.9). From triangle ikj (see Figure 15)
we will have

P Osinfy ~
F'_GD__”Sm ¥ =0, (22.6)

After reducing conditional Equations (22.5) to linear form, /82
we obtain
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(e 29209 ~ .
Py oy Oy + Oy + 0Vyy, +a (B T+

"i"b(nj’—ni)""c(gj—Ci)""‘W:Ov (22.7)

where

~

oFaB, __ cigPe .
L= G i cos 8y, cos §;, sin (y]-k-—y,k),‘

aF 0P _ ctgPr
% = F5 TS =< bk [s'm 84 c0s b COS (y,k Vi) — €08 8, Sin 6,,215

_ oF 9Py , OF OBi _ _ i B
%= 3B ovie 35 Ovie sinfr cos 8y 0055 k51n('\’1k—'Y1k)'l'

ctg p
1 Do (A XM= AY,,L,,),

a,= W&Tk‘ 0{)1 Ob,k =[sin 6ik c08 8,5, c0s (Ve — Vie)

ctgB;tg 8n

— c056k51116k]T_—————
i ¢ Dsinf;
5. (22.8)
X COS Ojp
X (824 0 u"f“'"WAZﬁ)r
_oF 1
O = Tpir pix’
_ 8FaD aF aB; = 4
@ == 300Xy, Ry =i T
ctg B;
Dsmjﬁ (l,k—{—Lﬂcosﬁ,),
oF aD oF opy
=Myt

b=3psav;; T 9B 98Ys

cig f; (hljk -+ Mji cos ﬁj),

D sin By
ar o .
€= a[a)gggu - aﬁ,-aAil” =N+
+ I;tsif);s (nji + Ny cos Bp).
ehy o VIZUGT LR T g, (22.9)

W =
DY " Y i LMy A NT)3
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The conditional equation of measured distance may be obtained /8

in another form, by eliminating the coordindtes of the AES posi-
tion from the basic equations of (18.1), after which three equa-
tions remain

AX = pulin —Pinlins
AY jj = ity — P (22.10)

AZ:] :“‘plknik = Pjpljpe

After both distances have been eliminated from these three equa-
tions, we obtain the conditional equation of the synchronization
plane.

Calculation of one of the distances, for example pjk (if

distance Pik is measured), from the first equation of (22.10)

_ Pkl AXy;

(22.11)

and substitution of it into the second equation leads to the
conditional equation of measured distance in the form

F' = (AXyj—ppplin) mp — (AY 5 — piptip) Lip = 0. (22.12)

Reducing it to linear form, we will have a conditional equation
in the form of (22.7), where
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OF Ay, . OF dmy, R

Y760 0y + Gz Oyip ik ©08 Bux 008 83 cos (v ?lk)’

o == ar’ al[k k*_ aF’ a”l.ik~
T 0L 0bip 1 Oy 08y

OF " al;y aF' dmjy,

== pyr sin 8y €08 85 €0 (Vjr — Vir)

(13:

== — P4 €05 8, €08 §;, cOS (V5 — Vi) -+

Oljz 0vin amjp Iy
+AX il -+ AY g,
ar’ dlj OF" dmjy . '
== =1 0. [} N T T
s Al 08, . Omjp 00 tg 61k [AYUIJk A‘XU ik T

4 pus, €05 8,4 €08 Oy sin (Vjr — Vi)
ol o (22.14)

Qg = —19_4)‘7 == CO0S 6ik Ccos 61}\ sin ('Y"k — Yik)’
-
- ANX;j

oF’
b= gayy; = ~liw

PO
eazy T

W == (AX{;— pinlir) mijn —
— (AYY— piunir) Ljn-

=g,

In the case when, besides the directions to the AES position, /84
both distances to thls pesition Pik and pjk are calculated from

two observation points, a conditional equation of the form (22.6)
or the form (22.12) may be compiled for each of the distances.
Moreover, one of these equations may be replaced by the condition
which expresses the cosine formula for a plane triangle. This
condition 1s obtained as a result of adding the squares of the
three basic equations of (18.1)

@ = Dij— ph— Pl + 20,405 €08 Py (22.15)

Reduction of (22.15) to linear form ylelds the conditional

equation ayvy , - Aol 4 asly,, +-egvs, +

-+ UsVp,,, + dcvy,-k +a (E, — &)+

+b (=) e (=) +W =0, (22.16)
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where
— _%9aB, S ai )
1= Ghp oy PirPie COS 81 €08 87581 (1 — ),
_ ‘ 8¢ dpy . 8 .
C=gn. a5, — — Pirlir [sin &;, cos §;, cos (yy, —Pjr) — 08 8y, 8in 8],

. a9 aﬁk . :
Oy = 2B Ovpe =3 PPk COS 8,4 cos 5,'k Sin (Vjr—Yix)s
aQJ aﬁk ) . - .

% =g, Ty Pirlje [Sm 61'_k. €05 84 €03 (Yj — Ys¢) — cos 8y, sin 6lk]_s

%:_(%?__:pjk cos By P -
L (22.17)

'
0= Foir Pir €05 By — e

__ o@dD
¢=3paax;— X

_ 8péD .
b_:ﬂwAhf~AYW

-~ 99D
©=9Daaz; = Zui

ifs

1 ) » r r 14 , r ’ 4 ’ ’
W=—- [D?; — Pix — Pji + 20ik0} (ind e+ mamy, -+ nin ). (22.18)

Finally, for this same condition, the equations (22.10) may

be used dilrectly as conditions

Q1= AX};— (Purlin—Pjelie) =0,
@2 =AYy — (pumy— pppmyp) =0, (22.19)
Q3 =AZy;— (Prrue — Pptyi) = 0.

~N
o0
1

|

After reducing them to linear form, we obtain
Oy, -+ ovs,, + dsvm + s, +
+asvp,, - Uy, -2, (§ - &)+
+b (M) Loy (§;—C)--We=0,
Prvwy &-Busy, - By, + Bucay, -+ (22.20)
=+ ﬁsVP,-k "."‘ ﬁsvpjk +ay (§—§) - ’
+0, (;—m;) +-¢ (&—C)+Ws=0,
€10y, - oy + ey, e +
+ &V, + €V, + a3 (E, — &)+
s (M~ ) + 5 (§— &)+ W, =0.
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where -
Uy == Py, €0S Oy, sin 4,

Uy = Py 5in §y, cos yyp,

Qg = _plk Cosaik sin ‘ylk’
0y == —p;p sin 61-,‘ COS Y},
Q5 ==.-— oS Oy, COS Y4,

g =058}, cosy;;,
ay=1, b=0, ¢ =0,
Br= —pu cos 6;; cosyye,
i =Pik sin 8 sin yy,
Bs = pjr cos 8, cos y,
o= = pjusin dje sin vy, (22.21)
Ps= — cos &;; sin vy,
o= cos b, siny;,,
ay =0, by=1, ¢,==0, -

g, =0,
€9 = —= Ppp €0S O,
£3=:0,
€y =Py cOs §j,
&g = - sin 6‘;‘,,

€g==sind,
ay=-0, k=0, ¢;=1;

N
(e o)
o

We == AXY; — pii cos 8y cos yiy, -1
=4-pji c0s §j; cos vy,
W= AY?{— plpcos 8], sinyf, + (22.22)
+pjx cos 8}y sin vy,
Woe= AZY;- - pip sin 8y + pjp sin 8},.

Conditional Equation of the Difference in Distances

Let us conslder a space triangulation figure (see Figure 16),
in which photographic observation of two AES positions is accomp-
lished from two ground polnts, and, moreover, the difference in
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distances to these same AES positions 1s calculated from one of
the ground points. Two conditlons of the synchronlzation plane
and one base condition for the measured difference in distances
occur in this figure, which has the form

F=2p;+DAXy;+EAZ,; =0 (22.23)

(Another equation wlth functions of other coordinates may also

be obtained), where

©osin(ye,—vVir,)  Sin (Vie,— vie,)

€0s §;g, sin yjk, €0s 8y, sinyjp,

(22.24)

cos b ik, COS Yy,

SIn (Yin, —Vin,)

cos 8, cos vy,

SIn (Y, ~—Vin,)

After reduction to linear form, we obtain the conditional

correction equation

- alvTihx

D b Uale. L v . )
+“«v°ik, }‘(137”:[-,“ ! a4z’3jh.+a5vnk,+a61’8m,+

: e : (22.25)
T U5y, T OsVey, + Uay, +a (§;— &) b (L — &) -+ W =0,
- 8. cos (v —v;
in which oy e oF €09 0in, €08 (Vim, TVit) (AX gin v 4 AZy €08 Vin),
1. aYikl - sin? (Yik‘__\yikl) ( i \"kl.—{ t YJA‘)
- OF sin 6 . .
== 5 =— =—— (AX; sin y,-,,‘_—I-AZ,i COS Yjr,)
ar cos §;
Qg == = — oy it (AXU sin Yik, + AZ[I- Ccos Yih,),
i, SI® (Vjg, —Vin,)
: . ‘ \ /81
« _—:._6_1’___:0
- * aﬁikn ’
oF cos §,,, cos (Vine— Vi) . . :
Uy = = blae £ ¥ (~AX, siny; AZ; cos .
5 v st (v =) i1 Sin Yjn, + AZy cos )
aF sin §,,, .
(16 == (76”‘, == — sin (Yihl——-‘.'ih’) (—. AXU sin ?ik’ +AZII COS Yl.k!)’
. er cos 8,
Oy == = e 2 — AX,;: si -AZ; 08 vin ),
T oyp, Sm“(?,‘k,—Yik,)( 4y Si Yan, - AZyy €05 Yit,)
or
as.— 17431-1{2 O,
aF
Ug === 6}55[ 1,
- aI“ J—
= Faxy '
L oF 22.26
<. b"" aAZ“' - ( )
128 W = Api+D’ AXY++ B AZ. (22.27)



In complex space triangulation figures, we may encounter the
most varied combinétion of measured directlons and differences in
distances. However, the conditlional equations occurring in this
case may be reduced in the final analysis to conditlonal equations
of synchronization planes and to conditional equations of the
differences in distances, similar to those which we have presented.

The Order of Adjustment

Preliminary values of the coordinates of the observation
points to be determined should first be established in order to
compile conditional equations. Thls may be accomplished by
different methods, for example, by sequential transfer of the
coordinates from initial points through elementary space triangu-
lation figures, omitting calculation of AES coordinates.

An important process preceding adjusting calculations is
the selection of conditional equations and enumeration of their
number.

The number of equations of the synchronization planes may be
calculated by the formula

=3 AL i~ 3)1,
pe= 2 8i i+ (my—3)] (22.28)

where s is the number of observed AES; and m 1s the number of
directions converging at a given AES position. The number of
base conditional equations for chord bases, the measured dis-
tances to the AES, or the difference 1n distances 1s equal to
the number of these values.

The weights of the measured values are established by the
rules outllined in Section 21.
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Joint solutlion of the conditlional equatlions under the

condition 4
[pvv] - 2 Z kr {[(11)] '4" ar:&l '{" br"]i + crcl] = min

leads to a system of normal correlation equations and coordinate
corrections of the observation points, which has order r + 3P,
where r ls the number of correlates equal to the number of con-
ditional equations, and P is the number of observation points

to be calculated. '

By combining into separate groups the conditional equations /88
contalning correctlons for the same measurements, partial inde-
pendence of the normal equations corresponding to them 1s achieved.

The described method 1s rigorous for adjustment of space
triangulation networks of any construction.

23. Adjustment of Space Triangulation, Formed by
Planes by the Parametric Method

If space triangulation is constructed by simqltaneous photo~-
~graphic observations of each AES position from two observationv
points only, the conditional equations of the synchronlzation
planes are‘independent of each other. : |

Having expressed the conditional equation of plane (22.1)
in explicit form with respect to corrections for additional
unknowns, we obtain

— A — B —Chly+ A+ By +-Coly - =g, - - (23.1)

where Ak, Bk’ and Ck are the coefficients of the plane equations
which are calculated by Formulas (22.2). The free term is |
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L= A (X)—X9) + B (Y= YD) + Ci. (29— 2), (23.2)

where X%, ¥°, and Z° are the preliminary values of the coordinates
of points 1 and J. The right side of the equation is

€ = — (0aVy, Oty T Uy T 0avsy), (23.3)

where oy are the partiai derivatives whose, values are calculated
by Formulas (22.2).

If the measurements have systematic time errors, the equation
assumes the form

e, = — AL, — Bknl“'ckgl"r‘Ab:f‘j Bk"]i+Cle§1+ (onde - agks) °'t,+

‘!—(ask“*—(l.ﬂ; )G‘l“"‘lk. (2304)

The unique feature of Equation (23.1) is that the value
which 1t describes is actually not measured. It is a single
geometric image (plane),. obtained on the basis of several measure-
ments. Nevertheless, Expression (23.1) may be considered as a
correction equation both formally and 1ln essence, since the value

€, expresses the error of calculating the given plane.

k

The'weight of the equation of.the synchronization plane 1s
calculated by the expression ‘ '

pk == ag ag aa + . ) ( 23 . 5 )
Pyp  Pux - Py p51k

Joint solution. of the system of correction equations (23.1) /8
under the condition [pkekekj = min, which is equivalent to condi-

tion [vaYvY] + [p6 GVGJ = min, leads to a system of pormal

equations whose order will be equal only to fhe number of the
unknown coordlnates of the observation points to be calculated,

i. [ ] P.
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If there are separate AES positions in the space triangula-
tion network observed from more than two observation points, and
(or) there are linear measurements, the combined method of adjust-
ment by the parametric method may be used, when the synchronization
planes and direct measurements are considered jointly as measured
values. When adjusting for AES positions, observed from three or
more observation polnts, by this method, as well as for linear
measurements, the correction equations are compiled in the same
way as in the parametric method. The equations for correction
of planes (23.1) are compiled for AES poslitions observed from two
observation points only. Two partial systems of normal equations
are compiled for the two groups of correction equations obtained.
The first system includes the unknown corrections of the coor-
dinates of observation points and AES positions. This system is

~solved until elimination of the corrections of the coordinates

of AES positilons. Afterwards, all the coefficients of the trans-
formed system are added to the coefficients in the case of the
corresponding corrections of the second partial system. The
order of the connecting system of normal equations obtained, whose
solutlion gives the corrections of the observation points to be
determined, will be equal to 3P.

The combined method will also be rigorous for adjustment of
trlangulation of any construction.

24, Adjustment of Space Triangulation Constructed from Chords

If each AES position in space triangulation is observed from
two points only, all measured values may be divided 1nto groups,
each of which is related only to a single chord, connecting the
observation points. Adjustment may be carried out in two stages,
with such a construction of space triangulation. In the first
stage, the most probable values of the unknowns which characterize
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the position of the chord itself are calculated as a result of
adjustment of the values measured directly. The second stage
consists of adjustment of a three-dimensional triangulation network
constructed from chords. This method of adjustment (if simultan-
eous photographic observations only are carried out in the network)
has been named the "method of closing directions™ in the litera-
ture.

The orientation angles of chord A and ¢ and its base D are
used as the "measured values" in adjustment of triangulation of
chords (in the second stage). However, all these values will be
dependent, because their values are calculated as a result of
adjustment of the same measurements in the first stage. There-
fore, as a result of the first stage, along with the most probable
values of corrections of values A°, ¢°, and D°, we must calculate /90

the elements of the correlation matrix

drxn da® Gap
Qreop=| gor qoo qap |, (24,1)

dpy Y4po» {pp

which 1s required for the second stage of adjustment.

The parametric and conditional methods are applicable in
both the first and second stages of adjustment of space triangu-
lation constructed from chords.

Let us consider speclific uses of these methods.

Adjustment in the First Stage by the Parametric Method

If space triangulation is constructed only from simultaneous
photographic observations, each measured value y and § is con-
tained only 1n a single equation of the synchronization plane and,
consequently, these equations will be independent.
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In this case, each planar equation of (16.9)
Fy=tg 8y sin (Ay;—v;) +-tg 84 sin (vi— Ayy) -+ tg Dy sin (v — vi) =0
may be represented in the form of correction equations. By re-~

ducing it to linear form, we obtaln

Ep=ay, AAU -{" bk Ach/ + lk_’ Weight Dz, (214 .2 )

where
_ aFk =t 5 ALY -l
=38, = 18 Oip COS (Pie— Aij) tg 8;r cos (v — Ay;) (24.3)
b, — 9k _ __ 8in(vjr—vir) ! :
EFTom T T T cost iy
Ly = tg 8ip sin (A3 — je) -+ tg 8j sin (pin— Al) -+ tg O sin (vj, — yix)- (24.4)

The values A;J and Qij are calculated from the preliminary coor-

dinates of points 1 and j according to Expressions (16.13). The
weight of each Equation (24.2) is found from Formula (23.5), in
which
aFy .
U= G = tg 8,5 cos (Vi — Ay;) — tg @y; cos (Vi — Yie)»

_0F, _ sin(Ay—vir)
G2 = 06, cos2ly (24.5)

al"l .
Uy = }TZ = —tg 8y cos (A —vps) + tg Dy c05 (Ve — V),

0= e __ S0 (e —Ayj)
4 b cos? §p, *

Solutlion of the system of Equatiohs (24.2) under the condi-
tion [pkekek] = min leads for each chord to a system of two nor-

mal equations, as a result of which the correction values of AA

and A¢ are obtalned, as well as the elements of the correlation

matrix
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dor Jow

OA(D:[QAA. f]Am]. , (24.6)

If space triangulation contains both the angular measured
values (y, 8) and linear values (p, Ap), the conditional equations
of the synchronization planes become dependent, because the
measured values y and 6§ will also be contalned in the conditional
'equations which occur from being combined with the dlstances and
differences in distances. In this case, the plane equations may
not be considered as correction equations, and correctlons of
directly measured values may not be expressed in explicit form
only by the unknowns A, ¢, and D, which characterize the direction
and length of the chord.

For this situation, the coordinates of AES positions and the
coordinates of one of the observation points at the end of the
chord may be selected as unknowns in the first stage 1n adjust-
ment by the parametric method. The second point should be con-
sidered as the reference point, because we are interested in the
given case only in the mutual position of the chord ends.

The equations for correctlng the measured values VY, \FY
vp, and vAp have exactly the same form as adjustment of the

entire triangulation by the parametric method (21.3), (21.8),
(21.15), and (21.19). However, these equations do not contain
corrections of the coordinates of point (i), and the corrections
of the coordinates of the other polnt (j) actually become the
corrections of the differences in the coordinates (g = daX,,

W = dAYy, b= dAZy, ).
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As a result of solving the system of normal equations for

each chord separately, the value of the differences 1n coordinates

AX, AY, and AZ and thelr correlation matrix are calculated

(24.7)

dax ax dax Ay GAxaz
Qax, ay, az="] gay ax. day ay Gayaz |e
gaz ax Qazisy Qazaz

In conclusion, the values of A, ¢, and D, whlch correspond
to the adjusted values of AX, AY, and AZ from Formulas (16.13),
are calculated for the second stage of adjustment.

To obtain the. correlation matrix (24.1), and taking the

fact into account that A, ¢, and D are complex functions related
to the measurements by AX, AY, and AZ, by differentiation of

(16.13), we find
dA fu ha T 3
[dq):l=[ fa  foe fzs]'[’l]’ (24.8)
_daD fa f2 fs )l L E

where
fo o= oA AY i
B7"9AX T T AXE-AY? »
fro== A AX .
BTG AY T AXEEAYS
e aA
fe=557 =0
foy == &M o AX -4 AZ
AT GAY (AX24- AY2-1AZ?) VAXE L AY? '
fro e o0 AY -AZ
22 7~ \Y Vs
dAY (AX24-AY2+AZ) VAX2 [ AYE ° (24.9)
f 8 - ]/ﬁz.:..Ayg .» .
BTTOAZ T AXITLAYEAZE »
oD AX
for= gy = T
2 VAX2TAYEFAZ2
form oD AY .
BT0AY T YRXTLAYeF Az
/ o AZ
BTUOAL T VAR AYE L AG
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Now,

fu fie fis gAXx AX qAX AY QAx oz
Qrop=| fua fu fu || tavax qay AY Qavaz |X
i fa2 fas grzax Az AY  QAazaz
fu fo s 9T [ dan Qe qap (25.10)
X| faa foo fos =[ qoy oo qop } .

fir fo faa dos oo  gop

Adjustment in the First Stage by the Conditional Method
with Additional Unknowns

Depending on the composition of measurements in the space
triangulation figure from which the given chord is calculated,
plane conditions and base conditions for the measured distances
and their differences may occur. It is obvious that corrections

must be introduced into the orientation angles AA and Acp and

correction in 1lts base AD in this case, as addifional unknowns.
In the general case, the conditional equation with additional
unknowns for any composition of measurements will be

N oA abp +bAg+c,Ap W, =0, (24.11)

where v, are corrections of the values measured directly, and the

k
coefficients o, are calculated by the formulas of Section 22.
The values a,s br’ and ¢, are partial derivatives of the form

a = 3F/8A, b = 3F/09¢, and ¢ = 3F/9D, which may be easlily obtained

/93

from consideration of expressions for specific geometric conditions.

One correlate in the system of the normal correlation equa-
tions and corrections of additional unknowns will correspond to
each conditional equation. Thus, a system of normal equations
will have an order equal to r + 3, where r 1is the number of
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conditions and 3 corresponds to the number of additional unknowns

— corrections A , A » and A .
hig” Py P1

As a result of solving the system of equations under the
condition

[Pv]—2 Bk, ([ov] + a,Ay -+b,Ag -+ ¢,Ap) =1ain
for each chord, the corrections of orientation angles (AA, AQ)
and chord base (AD) of interest to us, as well as the correlation

matrix (24.1), will be obtained in addition to the values of the
correlates.

Adjustment of Chords in the Second Stage by the Parametric Method

In adjustment of space triangulation constructed from chords,
the values of A', &', and D', found from adjustment in the first
stage, are used as the measured values in the second stage. The
correction equations for this case are presented in Expressions

(21.12) and (21.15), where the symbols Zik’ Myyes and Ny should

be replaced by L j? and N The free terms of the correc-

130 My 13
tion equations are calculated by the formulas

Ly=AV A
lg= @@’ (24.12)
lD= DO—D',

where A%, 2%, and D° are the orientation angles of the chord and
its length, obtained from the preliminary coordinates of ground
points.
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Since the values of A, ¢, and D for each chord will be
dependent, the generallzed least squares principle vTQ'lv = min
must be used for joint solution of the system of correction
equations. The use of this condition leads to a system of normal
equations of order 3P (P 1s the number of observation points to
be calculated)

ATQIAX = ATQ™L, (24.13)

where A 1s the matrix of the coefficients of correction equations,
L is the vector of the free terms of the same equations, and X 1s
the vector of corrections in the coordinates of ground points.

The elements of the correlation matrix Q are calculated in the
first stage of adjustment.

We note in conclusion that the reciprocal correlation matrix
Q ! is simpler to calculate if the correction equations, in which
the unknowns are corrections AA’ AQ, and AD, are used in the first

stage of adjJustment. Actually, the system of correction equa- /94
tions, related to the given chord, is written

a b, ¢ ‘A‘\ l.
..... [Aq,J_*_ R (2b.14)

or in generalized form

aA--L =e. (24.15)

The normal system, corresponding to (24.15), will be

aTP.aA -+ aTP,I, =0 (24.16)
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Hence, we find the correction vector A {A,, Aq, Ap},
A = —(aTPya)  aTP,L = — QaTP.L,  (28.17)

where Q 1s the correlation matrix (the matrix of weighting factors)
of system (24.16).

The reciprocal correlation matrix Q !, which is required for
adjustment of chords in the second stage by the parametric method,
has the form

Q7 =[(a"Psa) ] = aTP.a. (24.18)

Thus, 1f corrections AA’ A¢, and A. are calculated directly in

D
the first stage, matrix Q ! coincides with the matrix of normal
equations of the first stage.

Adjustment of Chords in the Second Stage by the Condltional Method

In adjustment of space triangulation constructed from chords,
introduction of additional unknowns — corrections in the ground
point coordinates — is useless, because the planar equation
passing through three observation points is satisfied for any
values of the coordinate of these observation points. Therefore,
the conditional equations of coplanarity of three free vectors,
as well as the polar, base and coordinate conditional equations
must be used in the second stage. Calculation of the number of
condltions of each type may be carried out by the same rules as
for two—dimension&lnetworks. We should add that the polar and
base conditions in a space network formed by chords are perceived
"by the eye" as similar conditions in a two-dimensionai network,
and the conditions of the coplanarity of three free vectors are
percelved as the conditions of triangles with varlable angles.

140



The coplanarity condition of three chords, belonging to a
single three-dimensional triangle (the condition of the plane
of three observation points), according to (20.5),has the form

1"‘:: A‘{l ﬂ[z » 1‘[3 '::O, (2u019)
- Nl‘ Nz A7'3 -

[}

where Li’ Mi’ and Ni are the direction cosines of the chords cal- /95

culated from the orientation angles of chord A' and %', adjusted
in the first stage. By reducint (24.19) to a linear form with
respect to corrections in the orientation angles A7) and Vs WE

obtain

‘ aor
G lAl -+ 01) U(T) !‘I’V‘"‘
o o } ( (24.20)

Representing the partial derivatives of (24.19) in the form

oF  gr oL oM aF aN
oA~ oL aA'+‘ow oA *‘a\ N
ar aFr oL ar oM aN (24.21)

L T
we obtaln

_or

jy G
. ad)l cos (Di ’

where A, B and C are found from Expressions (16.3) with replace-~
ment of symbols 7, m, and n by L, M, and N in them. The free
term of Equation (24.20) is calculated by the formula

W=L'A +MB +N'C, (24.23)
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in which all values are calculated from the values of A' and ¢'

obtained in the first stage of adjustment.

The conditional base and polar equations formally have the
same form (otherwlse, only the free term will be calculated).

Expanding Expression (20.9) in a serles, we obtain

N 3F
A, VA szq;l FW=0,

(24.24)

The coefficients of Equation (24.24) may be represented by

oL | 9F 9B  9MM; | OF ofy a_,v,)

t
aF"_.Z ( or. oy oI
FY.v8 e OL; " IA; + P A, o, + e ON; 0N,

. . (24.25)
OF (. OF , 3B oL + L OB oMy | BF 8By oN.
aD; T OL; " om, apk “aM; e, F’dﬁ;' dN; “?ﬁi‘)’

1

where Bk are the angles of the three-dimensional triangles formed

by the chords and t is the number of angles in which the given

chord 1s contalned.

N
\O
(e)

Having calculated the partial derivatives in (24.25), we
find the following expressions for the coefficlents of Equation

(24.24)
‘7*\1 “Z( y :xti_g‘k (Ll — L Afz)
d el (N~ N, cosBy), (24.26)

FI Amé (h_ Y sin m cos Oy
where 1 and J are the numbers of the chords which form angle Bk

If the bases of the chords are measured in the network

Equation (24.24) assumes the form

a\, vp, Zacp Vo, - (24.27)

vD: i vD. ___
Ty + 73;‘-{- W =0,
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where VD

are the éorrections for thé measured chord bases.
i .

The coordinate conditions for a network constructed from
chords have the form

q)XzzL}D[—AX,
cpi’":Zl"{[Di—;AY, (24.28)
(Pé':ZN;‘Di—AZ.

Henceforth, we will use the conditional equation only for
the abscissas, since the other equations may be obtained in a
similar manner.

By reducing the function Py to linear form, we obtain the

followlng conditional equation

S 90x S 99x
2 "Ai+2m-?®,+wx==-0’ (24.29)

in which

._a.c&Y_.._ aLl D, aDl

At vt (24.30)

%%x oL
= G4 9D;
a0, — o, Yit D, L.

Having calculated the partial derivatives which are contained in
(24.30), we obtain

t .

a(p 9 % - T et - N

b = =MD+ LD, 3 (— 1)t LB (p oy,
: 1 .

sin f

(24.31)

opx ' ' ! _ . _
T, = ~NDicos A+ LD,y (—1)™* L8P (v x cosp,),
i .

sin P cos @

where the symbols t, 1, J, and Bk have the same meanings as in
Expressions (24.26).
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If the chord bases in the network are measured, the form of
the coordinate conditional equations will be simplified consider-
ably; thus, the equation for the absclssas 1s written

— _AX AX
EAY‘U“I i cosd)l Vay, T Z) 5t UDI-} Wi =0. (2’4.32)

The set of conditional equations which occur in the given
space triangulation network 1s written in matrix form

oV - W =0, (24.33)

where a 1s the matrix of the coefficients of the conditional
equations, V 1s the correction vector for values A and ¢, and W
is the vector of free terms. Joint solution of Equations (24.33)
under the conditlons of the generalized least squares principle

VTQ'IV = min leads to a system of normal correlate equatilons

@QuTK -1 =0, (24.34)

in which K is the correlate vector and Q is the correlation matrix,

obtained in the first stage of adjustment. Having calculated the
correlate vector from System (24.34), it is easy to find the
deslired correction vector for the orientation angles of chords

A, &, and D

V=Qd’K. (24.35)

We can avoid the use of the correlation matrix of "measured
values" in the second stage of adjustment by introducing a
special local coordinate system for each chord in the first
stage of adjustment. Introduction.of this system, one of whose
axes 1s aligned along the displacement of the end of the chord
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in terms of altitude (h), and the second — along the displacement
in terms of azimuth (a), was proposed by L. Aardom, A. Hirnius,
and G. Vels for adjustment of space triangulation constructed by
the Smithsonian Astrophysical Observatory [46]. Due to the fact
that the axes of the error ellipse in the direction of chord 1]
are oriented along axes h and a in a plane perpendicular to the
direction of the chord at point j, correlation between corrections
for the direction of chord dh and da will be negligible.

Let us consider the relationship between corrections of the
orientation angles of chord A and ¢, and corrections of dh and
da.

The corrections of d¢ and dA cos @ are also located in a
plane perpendicular to the direction of the chord at point J,
along the axes of a plane rectangular coordinate system, which
are the traces of intersection of this plane by a plane passing
through the chord parallel to the Z-axls of a geocentric coor-
dinate system (z) and a plane passing through a chord perpendi-
cular to the first plane (s), respectively.

The axes h and a in a plane perpendicular to the direction
of the chord are traces of a plane passing through the chord and
the orligin of geocentric rectangular coordinates and of a plane
passing through the chord perpendicular to the first, respec-
tively. Thus, the axis h 1s approximately perpendicular to the
Earth's surface.

The coordinate system h, a is rotated wlth respect to the
system z, a by angle o between a plane passing through the chord
and the origin of the ground coordinate system, and a plane
passing through the chord parallel to the Z-axis. This angle
may be found from the expression
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COS O ==
— (YiZj—Y;2;) (Y~ Y ) - (ZiXj— Z;X;) (X; — X))
'QUﬁh”qﬁﬁﬁﬁ%%Xr"@XmH%Xﬁﬁ“Xﬂﬁm[07~YWH4XV<WP]‘ (24.36)

For adjustment in the first stage, let us represent the
correction equation of the synchronization plane (23.1), having

divided it by D in the form

ij?

e = Ay dLyj-+ By dMyj+CodNyj+ Wi, welght Pp. (24.37)

Transition from corrections of the direction cosines of the
chord to corrections of the orientatlon angles AiJ and @ij is

calculated by the expression

T~ dL - T —sin A —sin® cosA "~
dM {=| cos A —sin® sin A .[dA“s®]. (24.38)
2 4dN L 0 cos @ _ 4@

Accordingly, transition from corrections of orientation

angles to corrections of dh and daiJ is accomplished by the

ij
formula

R Rt s

The correction equations in the first stage, on the basils
of (24.37) and taking into account (24.38) and (24.39), will be
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. oL aAcosm oL 8o
‘k“{A[aAcwcb‘ T w;]*‘
oA AA cos @ aM aMm

.y . .
+ 5 [ dAcosd | 6h 0(]) oh ] +
aN - dAcos® aN M
+-C[aAcwd)° T M) }db+

oL dA cos @ oL ad
L {4[0Acosd)' 7R R T 7 ]4

A cos @ oM 6(1)
|+

""B[aAcosm ‘ da + aQ "

oN dA cos @ a9 )
4+ . — ’
tC [ oA cos © da + a(p “ba ]}d“+ W=
=[d (sin Asina—sin @ cos A cos a) — B (cos Asin ¢ -} sin @ sin A cos oc) +

+Ccos ®coso]dh+ [—A (sm A cos o J-sin (D cos A sin a)-
- B (cos A cos & —sin @ sin A sin o)+ C cos (I) sina] da W', 4

where

e=— (1L N —
k ( AT +M 0Yk +A 0Yk )vwk
9A )
—({ L N —_
( g T M G D 06:k )va“‘ (L avie M By

. i ac )
( a“-’/ L 55;/z HN a6 )v’k’

ik

‘OB ac V
+N ) vyie—

(24.40)

(24.41)

and the values of the partial derivatives are given in (22.2).

As a result of the first stage for the direction of each
chord, we obtain the corrections of dhiJ and daij and the matrix

o]

or the welights Py, and P,

The values of dh and da in the second stage are regarded as

"independent measured" values.

(24.42)

N
\O
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For their adjustment by the parametric method, the followlng
correction equations are compiled.

» _<i’i aq + oh dA cos D (Bt
hif =\ 8D TAX dAcos @ | BAK 8j—si)

b ad ah 3\ cos © ,
‘+(75'0AY—+0Aawm' aAY >(m“””f

oh ad ah A cos @
L. - . o FrN AL, L.
4‘(0& 787 T TAcs T IAE )“l )+ dhijy Pay

(24.43)

— Oa 9D + da 6Acosd>)(..‘__.__ ,
8=\ 3D "9AX T GAcos D GAX &)+

da 0D da dA cos @ .
_F(ém'aAY—+0Acmd)' GAY )“h“””T

da 9D da dAcos @\
"}_( ad 8 AZ + dAcos O Y )(5)1_’;1‘)":“1‘11]3 Pa,‘]-.

Taking into account that

[ dh ]_{ Cos o —sin & do
da | | sina cose | | dAcos ® _|

(24.44)

and _ AXAZ . AY Az  VARRTAYE
[ ao . DY AXEAY? D2 ANTENY? D2 >
dAcos® | AY AX 0

 DVaAxit{ay: DVaxerar:
(&j—&)
24 .4
x| i—w) |, ( 5)
(@j—&)

the equations will have the form

= ! (—-AXAZ wea'AYema)(“~*Wé
DVaX:faY? D T o

Vhij

— 1 AY AZ : .
3. AVE cos 0. AX smcc) 1)) -~
DY AXEFAY? D A (j—m)

/AX2 L AY?2
4+ D;’r cos @ (L;—Li)+dhyj,

—1 AX AZ (24.56)

Vg, = e sin @-}-AY cos a) i8S
U DVANETAYR N D } (it

7 VXY’lz‘-Té‘m ( — A)I')AZ sin & -}-AX cos a) (mj—n)+
. VAXTAY2 |
+ ———D—:——-—— sin & (L;—L;) -+ day;.
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In adjustment by the conditional method, the conditional 100
equation of ﬁhe coplanarity of three vectors — the directions
of chords (the condition of "a three-point plane") Ij, Jk, and ki,
on the basis of (20.5), 1s written as

oFr (oL 8® 8L,  dAcos®
[a@;(7$'ahf+aAmbm ok )+

_ ar (oM oo oM dA cos @
+ (3M'[,"( ap "ol T dAcos @ dh >—+

or aN oD aN dA cos @
4“?N (aq»'ah +'aAcoscD TTeR )] Py

oF 8L, 8b L aA cos @
+[6h;<6®°6a_F0Ams¢ )+
aF [ aM ad oM aA cos @
+aA1;i(aq) e TR cos® " da )fl‘
_oF (gyujL_+_ oN _aAmsm) . (24 .47)
73 \30 32 T hcos d  da a; +
oL 9 Y OA cos D\
+_[0Lm (am' o T I ® T )4'
, OF (M 90 + aM __ 9Acos @ ) +
T, \60 "ok T @Acos® ok
or N od N . dA cos @
4‘aA (am o T eAcsd ok )] zp+
' a]\ N f\ cos IO
te.e 61\’;:, ( ad aa + K cos D )] Vap - Wr=0;
where
, . 24 .48
Wo=Fo—F', ( )

F% is calculated from the preliminary coordinates of points i,
j, and k.

F' 1s calculated from the direction cosines L + dA, M + dM,
and N + dN, adjusted in the first stage, of each chord by using
(24.37) and (24.39) in succession.
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“25. Information about Adjustment of Space Geodetic Networks
Created by the Orbital Method

Space triangulation 1s the basic, but not the only, method
of creating space geodetic networks.

It is assumed in space triangulation that every AES position
is not directly related to others. However, satellite motion is
actually subject to specific laws. If at a given moment t¢ a
satellite is located at point re¢(xe, Yo, Zo) and has a velocity
vo(io, &o, éo), at the next moment tk it will be located at a

qulte specific point rk(xk, Yy Zk) and will have a velocity vy

(ik, &k, ék). Consequently, at any moment tk the coordinates

and velocity of a satellite may be expressed by its coordinates
and velocity at some initial moment t,

Iy =v1(Zo, Yor 2o, %o, Yor-Zos 14),
Ve =3 (%0, Yor Zor Tos Yor Zos ).

(25.1)

For all measurements made at moments tk within the interval /101

At, we may complle equations which connect the coordinates of
observation points 1 and the running coordinates and components
of the velocity vector of the AES. These equatlons are presented

in Section 15 for measured values of Oy o Gik’ and Pike The

equation for Ap is also presented there, but in the orbital method
this measurement may be replaced by the radial component of AES
velocity ~— 5ik‘ To derive the equation linking 6 to the unknowns

— the point coordinates (Xi, Y Zi) and the orbital parameters.

i’
(Xk, Yys 2y» ik’ ﬁk? ék), it is sufflclent to use the relation

which ensues from Figure 39,
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Oir =V cOS P.

v _.
1% fzﬁtj:“~~~~. Taking into account the fact that
7N ¥
1 . . .
cos f == rorr AX - Ay - AZyz),

Figure 39.

equations leads to the

we will have

. 1 . . | .
bu =5 (AX i+ AY i+ AZyzy).  (25.2)

Linearization of the observation
correctlion equations

.v“

v, .
Y

_ Y e

- sino " cos o -]
T poosd pcosd 0 0 0 0
cosasin 8 sino sin 8 cos §
= p - P T A o 0 .0 Ne
cosacos § sinacosd - sin § 0 0 0 (25.3)
iﬁ_,éAx}{i&_ﬂi y}{fi__ﬁ_ & AX  AY Az |
_{p p? p pzA Y 92A7 ] Pl
- "d(z,—X)
d(ye—Y)) L.~
d(s—2;) ls
X d.;:,: + l, !
d!{k - p e
- dz; -
or 1n reduced notation /102
B I ) 0)ik Y
0(1‘ v, = .’L:, !}’ Z.)k d(:c) v, z, &, Y, ")I&"‘ (25 u)

0l 8o Pk vy oy
WZT(I(A’ Y, Z)i+- L.
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The weights of correction Equations (25.4) are established
according to the measurement accuracy.

Reducing Equations (25.1) to linear form and substituting
the result in .(25.4), we obtain

L I ) L N
0z, v, 2,2, 9, 2), d(z, ¥, 3,2,y )

Xd( Y, 2 8, y, 2 — L0 Bk g (x| y, g0y (25.5)

+L=QRA(z, y, 5 %, y, 2)y—Sd(X, Y, Z){ L.

Essentially, introduction of Equations (25.1) and the
transition from correction Equations (25.4) to (25.5) indicates
conversion from the space triangulation method to the orbital
method of constructing space geodetic networks. In the orbital
method, as can be seen from Equations (25.5), corrections for
some elements which characterize the entire orbital arc in the
assumed time interval At are sought rather than corrections for
the coordinates of individual AES positions. Depending on the
extent and distribution of the measurements, and the accuracy of
the precalculations of the AES positions (the accuracy of numer-
ical integration of the equations of motion), the values of the
refined arcs may be different.

A group of correction Equations (25.5), to which corresponds
a partilally independent system of six normal equations, 1is com-
plled for each arc according to the number of measurements. The
form of the upper right side of the general symmetric matrix of
the coefficients of the normal equations, which occur in the
orbital method, is shown in Figure U40. This matrix, as in adjust-
ment of space triangulation by the parametric method, is ideal

for solution of the system according to the Pranis-Pranevich
method.

152



1st arc 2nd.afc 3rd_érp i
gayo;a gaé go fo?o go ;o’}o ;o gﬂ?@ ;o‘;oy.o ;o ¢ ?;

0

N

N
\\by
A

N
N

N

. N
W
N

Figure 40, .{

The orbital method, as already mentioned, makes it possible
not only to calculate the mutual position of observation points,
but to relate the origin of the coordinate system to the Earth's
center of mass. Therefore, in adjustment of a network construc-
ted by this method, along with correction of the coordinates of
individual observatlon points, we can calculate the corrections
common to all observation points by conversion of the coordinate
system origin.

The 1nitlal equations of the orbltal method are those

Equations (25.1) which we formally introduced. Actually, obtain-
ing these equatlons is a very complex matter and is one of the
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important branches of celestlal mechanics. The motion of a /103

——

satellite in the general case is described by a system of three
differential second-order equations

WO
=+ 2,0
&::%3*“250” (25.6)

where 3V/3x, 3V/3y, and 3V/0z are the components of potential
forces; and Qx’ Qy, and Qz are the components of forces having

no potentials.

A large number of forces act on AES motion. These are
primarily the gravitational forces of the Earth, Moon, and Sun,
atmospheric drag, light pressure, etc. Rigorous integration of
Equations (25.6) with consideration of all effective forces is /104

impossible., Therefore, in all cases approximate methods of their
integration must be used.

As can be seen from Formulas (25.5), integration of the
equations of motion is required for two purposes: first, to
obtain the free terms of the correction equations, and secondly,
to calculate the coefficients of matrix R.

It i1s natural that, in calculating the free terms, the
errors committed in integration of the equations of motion will
lead to methodical errors in the solution; therefore, in the
given case the most accurate of the known methods of integration
must be used, taking into account all known perturbing forces.

It is now possible, due to the use of high-speed electronic
computers, to employ numerical methods (for example, Runge-Kutta
or Adams methods), which make it possible to obtain more accurate
solution of Equations (25.6).
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Using numerical integration of the equations of motilon
(25.6), we can calculate the matrix of the derivatives of R as
well. For this we must attach importance to the increments of
the initial conditions and to the numerical difference method to
obtaln the values of the derivatives for the running moments of

measurements of tk, i.e., a total of 12 matrices must be calcu-

lated .of the form

[Ark, Ayr . Azp . Az, Ay Aik]
o; * 0; ' o7 ° TR y

where ¢ are the variations of the initial conditlons to which must
be added in sequence the values of *Axg, *Ayo, *AZg, *AXg, *A¥e,
and *Az,. It 1s natural that this method of calculating the
derivatives requires additional twelve-fold integration of
Equations (25.6). Even with modern computers this entails sig-
nificant expenditures of time.

Taking the fact into account that the coefficients of matrix
R may be known approximately, we may calculate only the main
effective force in Equations (25.6), for example, by assuming
that V = fM/r and Q = 0. In this case the equations of motion
‘'may be integrated preclsely and the analytical expressions in
the form of (25.1) may be obtained for the coordinates and the
velocity components of the AES as a function of the six integra-
tion constants. By differentiation of these expressions, we may
obtain the analytical expressions for the derivatives of matrix
R. The coefflcients of matrix R obtained in this way may be
found in Charnyy's work [51]. Several more rigorous formulas
which take into account the linear (with respect to time) secu-
lar variations of the orbltal elements are presented in Kaula's
work [26].
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The orbital method has three main advantages compared to the

space triangulatlon method:

— the number of parameters to be calculated is reduced;

— synchronization of observations is unnecessary, and the
solution includes both simultaneous and non-simultaneous measure-
ments, which makes it possible to increase their total number;

~
'—l
o
\S2}

— 1t becomes possible to relate the origin of the coordin-
ates to the Earth's center of mass.

However, this method has one considerable disadvantage which
1imits its use at present. In order to use this method, 1t is
necessary to know with high accuracy all the forces affecting the
AES motion.

Obviously, the best solution of geometric problems of space
geodesy in the future may be provided by joint use of the orbital
and space triangulation methods.

26. Comparative Survey of Methods of Space

Triangulation Adjustment

The classification of space triangulation adjustment methods
is based on their different features. Some methods permit joint
adjustment of all observations, and others make it possible to
divide adjustment into stages. In some methods, the coordinates
of all points of the network, including the AES positions, are
used as unknowns, and in others only the coordinates of ground
points are used. There are methods based on the parametric
method of adjustment and other methods use the conditional method
and variations of it. Specific combinations of the different
methods are also possible.
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For subsequent comparative analysls of the advantages and
disadvantages of these methods, we feel it is expedient to divide
adjustment into stages as the basis of classification, which will
correspond to a specific extent to the different methods of con-
structing space triangulation. A diagram of such a classification
is presented in Figure 4l.

The problem of selecting the space triangulation adjustment
method is solved by the analysis of a number of factors. The
main ones include the form of the measured geodetic data (only
photographic observations or their combinations with linear
observations), the rigorousness of the adjustment method, the
nature of the construction of the net (free or bound), the
predominant composition of the groups, the volume of computer
. operations, and the complexity of compiling programs for calcu-
lations on electronic computers. Let us dwell in more detail
on some of these factors.

A rigorous solution of the adjustment problem by the least
squares method is based on the following assumptions:

— the observations contain only random errors;

— a welght, inversely proportional to the dispersion value,
i1s attributed to each measurement;

— adjustment is carried out provided that [pvv] = min,
where v, are corrections of directly measured values.

Measurements of the elements of space networks will entail
inevitable errors whose nature and extent depend on the type of
equipment, its analytical capability and reliability, the organi- /107
zation of simultaneous observations, the methods of preliminary
processing, etc. )
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Due to the complexity and variety of equipment used, as well
as the enormous scale of investigations on development of space
geodetic networks, the number of possible sources of errors is
80 great that the most careful Investigations can hardly conceal,
and even less eliminate, the resulting errors. Therefore, the
probability of systematic errors in space triangulation is
increased compared to ordinary geodetic networks.

In many cases, the variance or variance ratio for different
measured values remains unknown, which undoubtedly makes it
difficult to determine the system of weights correctly.

Thus, even the first two conditions of a rigorous solution
of the problem of adjustment in the development of space geodetic
networks by the least squares method may be disturbed to some
extent.

This, of course, should not orient geodesists to the use of
approximate methods of adjusting space networks. Depending on
the depth of our knowledge, many sources of systematic errors
wlll be eliminated, and then the rigorousness of mathematical
treatment will begin to acquire even greater significance.

Joint adjustment of all observations of space triangulation
by the parametric method and by the conditional method with
additional unknowns 1s rigorous for networks of any construction.

Adjustment of the planes is applicable only to networks
constructed from simultaneous photographic observations. More-
over, this method will be rigorous if each AES position is
observed from two points only.
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The situation 1s similar when using the two-stage method of
adjusting three-dimensional triangulation constructed from chords.
If the observation of AES positions, contained in simultaneous
groups, consisting of three or more directions, are used to calcu-
late the geometric elements of the chords, the rigorous nature
of the method is disturbed.

However, the number of such groups and the relationship to
the total number of measurements must be taken into account.
Failure to consider single functions makes it difficult to deter-
mine the weights, whereas rejection of a large number of relation-
ships may lead to a loss of accuracy.

AdJustment of space triangulation constructed from chords in
the second stage of the two-stage method of adjustment will be
rigorous 1f the generalized condition of the least squares method
is used.

However, for example, thls method may be used for a network
of chords with well developed technology and computer programs for
adjustment of the entire space triangulation by the parametric

method. In this case, its use will not be rigorous if the diagonal

coefficients instead of complete correlation matrices for each
chord, are used as the welghts of the chord elements. The
correctness of assumlng it 1s not rigorous will depend on the
purposes of adjustment, the measurement accuracy and the desired
results. In each specific case of using approximate weighting
matrices, the anticipated methodical errors should be previously

calculated theoretically or from calculations on the models of
the networks.
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The volume of calculating operations depends on the method
of adjustment. This problem cannot be reduced only to determining
the order of the matrix of normal equations, which originate with
the conditional method or the parametric method. The simplicity
of the algorithms, the cyclicity of operations, and the possibility
of standardization of calculating procedures are of great
importance.

Let us consider space triangulatlon adjustment methods from
this point of view.

The preliminary coordlnates of the AES positions must be
calculated in adjustment of all observations of the network or
of observations of each chord in the first stage of adjustment
of triangulation, constructed from chords, by the parametric
method. Calculation of the preliminary coordinates of AES posi-
tions is not required in adjustment of all measurements of the
network by the conditional method with additional unknowns, as
well as during the first stage of adjustment of a network con-
structed of chords, if the latter are obtained only from photo-
graphic observations.

The form of the correction equations (measured values of
vy and §) is simple and standard in adjustment by the parametric
method.

The form of the conditional equations 1n the conditional
method with additional unknowns 1is more complex, but also stan-~
dard, 1f we remember that all conditions are described by the
conditional equations of the synchronization planes; and the
conditions of "fixed" lengths and directions of the chords are
described by the corrections of these "fixed" values. The cal-
culations in writing correction equations for the synchronization
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planes do not differ in any way from those for conditional equa-
tions with additional unknowns, because the welghts of the equa~
tions, which are functions of the coefficlents in the case of
corrections of measured values, must be calculated in addition
to the coefficients of equations in the case of triangulation
unknowns. :

In order to compare the volume of calculations in the dif-
ferent methods, the number of arithmetic operations for each of
them could be calculated. However, such a detailed comparison
has hardly any practical value due to the two following factors.
It was noted above that real measurement accuracy cannot be
judged by the free terms of the conditional equations of the
synchronization planes, since thelr value depends on the assumed
values of the preliminary coordinates of the observation points.
Nevertheless, calculation of the free terms of these equations,
as indicated by practice, 1is an obligatory process of preliminary
calculations, because it makes it possible to reveal crude errors
in observations and éspecially errors in thelr synéhronization. /109
In view of this, the volume of preliminary calculations, including
calculation of the preliminary AES coordinates and the points,
the free terms of the conditional equations of all synchronization
planes and of the coefficients of the equations, will be approxi-
mately the same for- the different adjustment methods. The second
factor is the fact that adjustment of space triangulation at pre-
sent can hardly be assumed without the use of universal computers.
Therefore, the slight deviations in the order and extent of pre-
liminary calculations for the different methods of adjusting
triangulation networks constructed only from simultaneous photo-
graphlic observations may not be considered as signifiéant.
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The adjustment of space triangulation networks, constructed
from combinations of photographic observations with measured
distances and the differences in distances to the AES, is
different. The equations for correction of the measured dis-
tances and the differences 1in distances are simple and the
order of their compilation 1s standard in the parametric method
of adjustment.

The conditional method with.additional unknowns 1s consid-
erably inferior in this regard to the parametric method of
adjustment. We are not only concerned with the very complex form
of the formulas from which the coefficients and free terms of
the conditional equations are calculated. The maln difficulty
consists in the geometric "dissimilarity" of the figures of such
networks. Any section of a network of specific dimensions may
differ from another both in the number of conditions and in thelr
form, as well as in the number .of unknowns contained in the
initial conditional equations. For this reason 1t 1is much more
difficult to organize calculations by the conditional method
with additional unknowns wilthin the limits of a single computer
program than in the parametric method. This will also be valid
in adJustmént of three-dimensional triangulation from chords.
However, in the latter case the conditional method will make it
possible to estimate the accuracy of calculating the geometric
elements of the network from the residuals of the conditional
equations.

‘The problem of the order of the systems of normal equations,
solved Jolntly by a certain method, 1s of definite importance

for comparative analysis of adjustment methods.

Data’were presented above on the number of normal equations,
solved 1n each method.
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For simultaneous adjustment of all trlangulation measurements,
the number of normal equations will be N = 3s + 3P in the para-~-
metric method and in the conditional method with additional

unknowns, N = Y, (2n - 3) -|- r-|- 3, where s is the number of AES
s-1

positions; P is the number of points; r is the number of linear
measurements; and n is the number of directions to the position
of each AES.

It is easy to see that, if a three-dimensional network is
constructed only from the measured directions which form synchro-
nous pairs (n = 2), the number of normal equations in the para- /110
metric method of adjustment is greater by 2s than in the condi-
tional method.

In synchronous groups consisting of three directions, the
number of normal equations 1s identical, and with a greater num-
ber of directions in synchronous groups the number of correlates
exceeds the number of corrections of the coordinates of AES
positions. Addition of linear measurements to photographic obser-
vations increases the order of the systems of normal equations
even more in the conditional method with additional unknowns.

A very large number of AES positions may be observed over
a prolonged period of observations for construction of space tri-
angulation. Simultaneous adjustment of the results of all obser-
vations may lead to a system of normal equations of very high
order (several thousands). Even the use of modern computers
requires a long time of continuous operation for solution of
such a system. The use of a two-stage adjustment method makes
it possible to divide this process into solution of independent
systems of normal equations whose number will be equal to the
- number of chords in the network. Moreover, systems of only two

normal equations will be solved in the first stage in the planar
method.
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The system of normal equations in the second stage of
adjusting triangulation from chords in the case of the parametric
method will have an order of N = 3P. The use of the method of
conditional measurements in the second stage requires solution
of a system of normal correlate equations of order N = 2n - 3P +
3Pe + B for a network of the directions of chords and of order
N =3n - 3P + 3Py + B for a network of the directions and bases
of chords. (It is assumed in the formulas that n is the number
of chords, P is the number of observation points to be calculated,
Po 1s the number of initial observation points, and B is the
number of "fixed bases.)

The expression for N indicate that in a network constructed
from the directions of the chords, the number of normal correlate
equations will be less than the number of normal equations for
correcting the coordinates, if there are no diagonal chords in
the triangulation (by analogy with ordinary triangulation, there
are no overlapping triangles). In the presence of diagonal chords
and "measured" bases of the chords, the system of equations in
the parametric method will be smaller than in the conditional
method.

As a result of comparing the advantages and disadvantages
of adjustment methods (Figure 41), we can make some recommenda-
tions on their use for adjusting triangulation networks of
diffefent construction.

Adjustment of space triangulation by the conditional method
with additional unknowns is generally feasible, especially'for
networks consfructed by a comblination of photographic and range
measurements.
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Adjustment of space triangulation with relatively small
distances between observation points (small chord bases), when 111

most AES positions are observed from more than two observation
points, is feasible by the parametric method.

Adjustment of space triangulation with large chord bases,
when most AES positions are observed from two observation points
and when there are only photographic observations, 1s feasible by
the plane method. If a very large number of AES positions is
observed in such triangulation, and also if the observation data
are gradually accumulated in time, first for some chords and then
for others, adjustment in two stages may be used. In this case,
the parametric method 1is more conveniént in both the first and
second stages.
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CHAPTER 6
ERRORS IN THE POSITION OF POINTS IN SPACE TRIANGULATION

27. The Importance and the Problems of a Priori Analysis
of the Accuracy of Space Triangulation

A priori investigation of the error distribution in geodetic
networks is the theoretical foundation for solving an entire group
of problems of geodesy, such as development of schematic diagrams
for construction of geodetic networks, drafing designs and their
evaluation, determination of the optimum forms of geodetic struc-
tures, and development of the technical regquirements for the
optimum values of the elements (angles and sides) of geodetic
networks. All these problems have always been at the center of
attention of geodesists and their investligation for ordinary
geodetic networks has been continued up to the present time.
These problems are even more timely for space geodetic networks.

We may assume that a priori evaluation of the accuracy of
space trlangulation structures follows two goals:

— determination of the anticipated accuracy of a specific
design (comparison of the accuracy of several designs) of a space
triangulation network;

— comparative analysls of different schemes of constructing
space triangulation for purposes of selecting the optimum types
and optimum dimensions of the geometric elements and figures for
use in the design of space triangulation networks.
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We note that in all cases the basic criterion of accuracy
is the error in the positlon of the trlangulation point.

It was mentioned above that space triangulation has no direct
relationships (measurements) in 1t between observation points,
but the instantaneous positions of the satellite are the inter-
mediate points. In this regard, the number of measured values,
connecting the AES position, is considerably less than the number
of measurements connecting the ground point to the AES positions,
observed from a given point over a prolonged period of time.
Therefore, we should assume that the same requirements should be
placed on analysis of the accuracy of AES positions as on the
individual figures of space triangulation.

We feel that it 1s more convenlent to obtain expressions
which are rather simple and descriptive, even if this requilres
specific simplification of rigorous, but more complex formulas
due to a decrease in the accuracy of the results obtained, for
a priori analysis of the accuracy of the position of space
triangulation points. '

It 1s expedient to place requirements on the expressions for
the error in the position of points of individual figures, so
that they are inveriant with respect to the transformation of the
coordinate systems and contain only the parameters which charac-
terize the "internal" geometry of these figures.

For figures forming a serles of space triangulation, it 1s

desirable to investigate the dependence of the position error on
the form of the figure.

168

~N



The expression for the error of the point of a space tri-
angulation series should reflect the dependence of the error
increment on the increase in the length of the series, i.e., the
nature of the accumulation of errors.

Expressions for errors in the position of the points of a
continuous space triangulation network should indicate the depen-
dence of the errors on the distances from the initial points, as
well as on the average values of the distances between points.

In the general case, the mean square error of the given
function of measured values 1ls described by the tensor

Mg Pt (27.1)

where F 1s the vector of the partial derivatives of the given
function, M? is the correlation matrix of the errors in the argu-
ments of the function. For independent arguments, M? is trans-
formed into a diagonal matrix.

For adjusted values of the arguments, Expression (27.1)

assumes the form —om I
v E o
) Reproduced | ® copy. I
A o asey nY available ¢
i (L) 7, best (27.2)

where ¢ is the error of unit weight; and Q is the reciprocal
matrix of the system of normal equations.

Tensor (27.1) 1s used to the full extent for a posteriori
analysis of accuracy, possible after adjustment of space triangu-
lation.

For a priorl analysls of accuracy, the elements of tensor
(27.1) are obtalned with a greater or lesser degree of approxi-
mation.
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The error in the unit weight depends primarily on the wvalue
of the free terms of the coupling equations between the measured
values and the unknowns. In view of this, it expresses the effect
of measurement errors. Moreover, in cases when the initial data
contain errors which are commensurable with measurement errors,
and the amount of initial data and their distribution in the tri-
angulation network is such that they affect the value of the free
terms of the equations, the error of unit weight includes the
errors of the initial data.

The elements of the reciprocal matrix of the coefficients él;ﬂ
of the normal equations and of matrix F depend on the value of
the coefficients of the coupling equations between the measured
values and the unknowns and on the number of equations. Because
of this, they reflect the effect of the geometric shape of space

triangulation construction and the number of measurements.

Thus, an error in the function of the adjusted unknowns
depends on:

-— measurement errors,
— the errors in the initial data,
— the geometric construction of triangulation,

— the number of measurements.

Design of space triangulation is usually based on the fact
that observations will be carried out by equipment which provides
a given accuracy. In this regard, measurement errors are assumed
to be the knowns for a priori analysis of accuracy. However, a
certain dependence between measurement accuracy and the geometric
shape of the triangulation figures, which has an opposite effect
on the results of accuracy analysis, may exist. Thus, for
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example, the refraction effects in photographic observations of
AES reduce measurement accuracy at low AES elevation above the
horizon of the observation point, whereas (as will be shown
below) it is preferable to observe the AES at minimum elevation
with respect to the optimum geometric shape of the figure from
which the direction of the chord between two points is calculated.

The effect of errors in the initial data on the results of
a priori accuracy analysis must be taken into account to a con-
siderably greater extent than is permitted by a posteriori
’accuracy analysis.

Errors of initial data, when the latter number is small, are
often of a systematic nature (error in the triangulation scale,
the total shift or rotation of the network) and are not reflected
in the value of the free terms of the equations, and consequently,
do not appear in a posteriori analysis. The formulas of a priori
accuracy analysis should also reflect such influences. Moreover,
in many cases the formulas of a prioril analysis of accuracy of
space triangulation will be based on sequential analysis of the
accuracy of the measurement function due to the complexity of the
figures of space triangulation and its specific features, included
in sequential calculation of first the AES positions, and then
of the observation points. In this case, the errors in the results
of each preceding construction emerge as the errors in initial
data for a subsequent construction, and thelr effect on the final
result must be taken into account.

The most important factor in a priori analysis of accuracy
is the consideration of the effect of the geometric characteris-
tics of space triangulation construction, because the essence
of the design of space triangulation networks is also included,
as was mentioned above, in a determination of the optimum mutual
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position of the observation points and of the AES positions to

be observed. Therefore, maln attention in this chapter is devoted élli
to selecting the formulas for a prioril analysis of the accuracy

of the elements and figures of space triangulation, which reflect

the effect of the geometric shape of its structure.

An increase 1n the number of measurements increases the
weight of the function of the adjusted values of space triangu-
lation. However, this increase should be regarded as comparable
to the required number of measurements to calculate the unknowns.
An increase in redundant measurements when retaining the geometric
shape of a triangulation structure increases the welght in pro-
portion to this increase. The redundant measurements, which
alter the structural shape, are reflected in the accuracy of the
results in a more complex manner.

An inverse dependence, caused by the specific nature of the
observation of space objects, may also exist between the effect
of the number of measurements and the shape of the triangulation
structure on the accuracy of the results, besides this dependence.
It includes the fact that the probability of an AES passing
through positions which are optimum with respect to the shape of
the triangulation structure may be considerably less than that
of passage through a more extensive, but geometrically less opti-
mum zone of the celestial sphere. Therefore, in the given
limited AES observation period, for example, the requirements on
the number of observations may prevail over those on the optimum
geometric shapes of the structures, to achleve a specific accuracy
of results.

Space triangulation in any method of construction consists
of individual figures; therefore, the method of estimating the
accuracy of the points obtained from the individual figures of
space trlangulation will be primarily discussed below.
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The expressions for approximate a priori analysis of the
accuracy of elementary figures will be considered below. The
effect of errors in the initial data and redundant measurements
on the resulté of the accuracy analysis will then be investigated
separately.

In conclusion, the problems of a priori analysils of the
accuracy of the positions of the points of series and of continu-
ous space triangulation networks, formed by the corresponding
figures, will be discussed.

28. Methods of A Priori Accuracy Analysis

A priori determination of the elements of the error tensor
of the function of measured or adjusted values of (27.1) and
(27.2), and especially their analytical representation as a
function of the perturbing factors, entails considerable diffi-~
culties. Hence, approximate and stochastic methods of analysis
have become widespread. Let us present a somewhat more detailed
description of the possible methods of a priori analysis of
accuracy. They will depend on the complexity of the object being
studied (the individual element, figure, series or network) and
the permissible degree of approximation of the formulas. For
example, the errors in such elements of a space triangulation
network as the direction toward the AES, the synchronization plane,
the chord, and the apexes of the elementary figures may be deter- éllg
mined mined by using the general rules and procedures of the
theory of measurement errors. The estimates obtained should
have been rigorous, but due to the complex form of the functions,
they had hardly any practical value. Moreover, the nature of
the problem itself is such that it is more important to obtain
approximate estimates of simple form, rather than rigorous but
cumbersome formulas, taking into account their future engineering

use.
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It is expedient to use vector algebra — i.e., to consider
the error in the position of a point or in the shift of a line
as some random vector in three-dimensional space —- to derive
the formulas of approximate analysis of the accuracy of construc-
ting the individual elements and figures of space triangulation.
This usually simplifies the derivation of formulas considerably
and glives them a descriptive geometric meaninhg. Moreover, vec-
tor representation makes 1t possible to obtaln formulas for the
accuracy analysis which are invariant with respect to coordinate
transformations, 1.e., to express them by the parameters which
characterize the "internal" geometry of the figures of space
triangulation (i.e., by the angles and sides of the given figure).

Geometric interpretation of the errors in the elements of
space triangulation provides a certaln simplicity and descrip-
tlveness to the expressions of a priorl accuracy analysis. In
this case, we start with the fact that each measurement deter-
mines some position surface in space, 1.e., the surface on which
the observation point or the AES position to be calculated 1s
located. Thus, for example, the measured values of space triangu-
lation determine the position surface: ¢ 1s a cone, Yy is a plane,
p is a sphere, and Ap 1s a hyperboloid. )

Every measurement error leads to linear displacement of the
corresponding position surface from the true position of the point
to be calculated by a value ’

mg

::—ng'adql " (28.1)

where‘mq 1s the error in the measured value q,/

leradg]=}/ (424 + (L) + (LY :
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Accordingly, when deriving formulas for a priori accuracy analysis,
both direct measurement errors and displacements of the ‘corres-
ponding position surfaces may be used.

In adjustment of triangulation, the coupling equations of
measurements with unknowns are linearized and, consequently, each
position surface neay the point to be calculated is replaced by
a tangential plane. Approximation of any position surface by a
tangential plane may also be used for a priori analysis of
accuracy.

The use of geometric interpretation is especially effective
for determining the effect of errors in initial data, because
calculation of the coefficlents of the reciprocal matrix of a
system of normal equations prevents this effect from being taken
into account.

Similar analyses for continuous space triangulation networks
are more difficult to obtain due to the large number of connec-
tions between points and the complexity of the functional
relationships.

The method of investigating accuracy with the aid of
stochastic models of geodetlic networks is used extensively at
present. This method became possible through extensive intro-
duction of electronic computers into geodetic analysis. The
undoubted advantage of the modelling method is the possibility
of determining the effect of different factors and thus of inves-
tigating them independently of each other, as well as the fact
that an accurate value of Tensor (27.2) is obtained in these
methods. However, this method has a number of disadvantages:
each model of the geodetic network is a random sample — one of
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the infinite number of possible states of the'given system —
after distortion of it. Therefore, the measurements of several
tens of different variants of the distribution of measurement -
errors must be tested for the same model with the same mean
square measurement error to obtain reliable estlmates. This
creates specific difficulties for any theoretical generallzations
about the data of distorted model tests.

A method which 1s sometimes used to characterize the accuracy
of the measured elements of networks after adjustment is the use
of the theorem of the mean ratio of weights which is expressed
by the formula:

p
—ad) . Z, (28.2)

pmeas

where n is the number of all measurements; and k is the number of
required measurements. However, the estimate obtained according
to this theorem willl be too general.

The theorem of the mean ratio of weights 1s insensitive to
the form of geodetic data. For example, the same numerical
characteristics will be obtained for a network with measured
angular values and distances as for a network with the same
number of angular values and differences in distahces. In fact,
even averaged indicators of the accuracy of these networks will
be different. Thus, the use of the theorem of the mean ratio o
of weights 1is justified only for comparison of the accuracy of
networks, obtained on the basis of homogeneous geodetic data.

The most complete analysls of the accuracy of the elements
of geodetic networks, as can be seen from (27.2), is carried out
with the aid of the reciprocal matrix of the syétem of normal
equations.
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As seen from Formulas (27.1) and (27.2), the reciprocal mat-
rix operation must be carried out to analyze the accuracy of the
different elements of a network, which is a difficult problem.

The problem may be simplified somewhat if a special coordin- L;;Q
ate system 1n n-dimensional space 1s introduced in which the
matrix of the coefficients of normal equations has an especilally
simple form. As we know from linear algebra, any symmetric matrix
may lead to a diagonal form, i.e., we must find a matrix* D such
that

A, 0...0
0 h...0
"D == A= )
DFI =l (28.3)
0 0 ...%._
where the values X1, ..., A, are the eigenvalues of matrix F.

A matrix reciprocal to A will also be a diagonal matrix

- i
7 0 0
Ar=| 0 5 0 (28.4)
1
00

It is easy to note that the analysls of accuracy for diagonal
matrices is simplified to the maximum extent.

In practice, we must be concerned with arbitrary matrices.
Therefore, we must consider the relationship of the eigenvalues
of the matfix of the coefficients of normal equations to the
weight coeffilcilents. |

¥D isfthe matrix of transition from an arbitrary base to
one comprised of eigenvectors.
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The eigenvalues of matrices have a descriptive geometric
Let us set a matrix of the coefficients of three normal

meaning.
equations
‘fll f]? fls
F= f-z1 f22 fza
28I
fu e fo- (28.5)
and a reciprocal matrix
qu G2 G :
Fl=Q= 921 G2 Gos . (28'6)
) f31 G2 Qa3

The elements of matrix (28.6) may be regarded as the coef-
ficients of the equation of an ellipsoid, arbitrarily located
with respect to the coordinate axes. For example, the following /119

ellipsoid corresponds to matrix (28.6)

I Qs Gus | [ 2
[z y z] Go1 Q22 Qoa | | Y |4-L==0. (28.7)
931 Qa2 Qagd L2

Reduction of the matrices to diagonal form corresponds to
the transformation of coordinates, when the coordinate axes coin-
cide with the axes of symmetry of the ellipsoid. We assume that
matrix Q (28.6) is reduced to the diagonal form

t, 00
T =DQD = [o t, o]. ' (28.8)
001 - '
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This means that the ellipsoid equation (28.7) assumes the canonical

form
, t; 007
[zy 21 {00

-
/|-
0044lz] (28.9)

= 122 P o 12 == 1.

If the Equation (28.9) is multiplied by u? (the square of
the mean square error of unit weight), we will obtain the so-called
mean square ellipsoid of errors

tlixg -‘l' 2;;1/2 ‘}" téz‘) oz p,2, (28 .lo )

where

1i =t

In the space of an arbitrary number of measurements, Formula
(28.9) assumes the form

tix‘i"r'tzxg‘**;-'-“i—th?i:l (28.11)
and describes an ellipsoid 1n a multidimensional space.

Thus, the eigenvalues of the matrices of the coefficients
of normal equations are the inverse of the squares of the semi-
axes of a multidimensional ellipsoid. The eilgenvalues of a
reciprocal matrix will be equal to the welght coefficients for
the adjusted values of the unknowns only in the case when the
axes of the coordinate base coincide with the principal axes (the
axes of symmetry) of the ellipsoid (28.11). Taking the fact
into account that the eigenvalues of matrix F and 1ts reciprocal
matrix Q are connected by the relation
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we can state that, after matrix F has been reduced to diagonal

form, its eigenvalues wlll be equal to the welghts of the adjusted
values of the unknowns on the base, comprised of the eigenvectors élgg
of matrix F, 1i.e.,

g:l:tl: pr; == )\,‘. ’ (28‘13)

Non-quadratic coefficients appear in the arbitrary coordinate
system in the ellipsoid equation (28.11) in exactly the same
manner as for the second order surface equation, when it is
located arbitrarily with respect to the coordinate axes 1ln
three-measurement space.

A number of relationships exist between the coefficients of
the ellipsoid equation which are invarlant with respect to the
coordinate transformations. One of these invarlants is the sum
of the coefficients in the case of the squares of the running
coordinates. For matrices, these will be diagonal elements.
Their sum is called the trace of the matrix and is denoted by
Sp. Accordingly, for matrix F we will have

SPF — fiy 4 fon 4. . At fer =Ry 4 ;-{—?-v/:. (28.14)

Let us rewrite this expression in another form with consideration
of Formula (28.13)

,{'EJ
i

k R
1 AN 19
'_SPF:—:‘_‘ ?'f:: e P
k k = zzpj. (28.15)

k
Setting-%igpﬁ::p&, we obtain

1

, & (28.16)
pcp:”};}l;fﬁ-
_ o
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From (28.16) we have the relation: the mean value of the
weight of the adjusted coordinates in geodetic networks is equal
to the mean value of the sum of the quadratic coefficients of

the normal equations.

Formula (28.16),like the theorem on the mean ratio of
weights, 1s the generalized characteristic of the accuracy of
the network structure. However, unlike the latter, it takes into
account the effect of both the number of redundant measurements,
the form of the network, and the composition of the measurements
from which the given network is constructed. Thus, this formula
estimates the accuracy of networks of identical configuration,
but with a different composition of measurements, or the accuracy
of networks of different shape. Of course, Formula (28.16) may
be used only for comparative analyses provided that the systems
of weights in the compared networks are determined in the same
manner (i.e., based on a single error value of unit weight). The
accuracy of calculating the points in the networks will then be
higher, the greater the value of pcp’ calculated by Formula

(28.16). The generalized characteristics of accuracy, obtained
according to the theorem of the mean ratio of welights or the

formula for the mean weighting value, are essentially useless in

an analysis of the accuracy of the position of a specific point

in an adjusted network. It 1s a very complex problem to obtain

a priori estimates from the elements of the recilprocal matrix /121
and analysis of them. However, taking the fact into account

that a priori analysis 1s in one way or another approximate,

the requirements on the accuracy of calculating the elements of

the reciprocal matrix and the requirement to use approximate

methods of its construction naturally decrease.
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Henceforth, we shall use those methods of a priorl accuracy
analysis, from those described in this section, which reduce more
conveniently to a solution of the given specific problem.

29, Errors in Space Trilangulation Elements

The entire range of the elementary figures of space triangu-
lation, previously considered in Chapter 4, Sections 17 and 18,
with respect to the a priori analysis of the accuracy of the
position of observation points calculated by these figures, may
be essentially reduced to three basic elementary figures:

— intersection of two directions (three-dimensional angular
intersection),

— intersection of the direction and the plane,

— intersection of three planes (intersection of planes).

In this case, the third type of figure — intersection of
planes — may in turn be reduced to a second type, because 1t
may be assumed to be the intersectlion of a single plane with the
direction of the line of intersection of two other planes.

Obviously, the main elements of these figures are the
direction and the plane.

Because of the characteristics of space triangulation con-
struction, the relationships between the measured values and
their functions are much more complex than those in ordinary
triangulation networks, since the position of polnts in space
trlangulation is often calculated with the aid of intermediate
elements, which are very complex functions of the measured
values. Therefore, consideration of the problems of a priori
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accuracy analysis naturally begins with determination of the
relationships between the errors in directly measured values and
those in calculating the geometric elements of space triangulation.

In order to derive the formulas for a priori analysis of the
accuracy of the position of points — the apexes of elementary
figures — the errors in the elements of space triangulation may
be represented in the form of linear shifts from the "true"
position of the points. Accordingly, we are interested in the
linear deviation of the plane passing through two points from one
of them (calculated) — due to the errors in measuring the values
which determine the position of the plane -— rather than the total
error of the position of the plane in space, which is naturally
characterized by the shift of its normal vector N.

Similarly, we are interested in the linear displacement of
the direction in the plane, perpendicular to it and passing through
a specific point, rather than in the angle at which the directional
error may be represented, i.e., the angular value of the deviation /122
of direction from its "true" position.

We shall use the following notation when considering the
expressions for the errors in the elements of space triangulation:

M — the error in the position of the apex of the figure,
my — the directional error (linear displacement),
mp — the error in the position of the plane,

mg — the error of the topocentric declination of the AES,
mY — the error in the hour angle of the AES,

mB — the error in the direction from the point to the
AES position,
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m_ — the error 1n the distance from the polint to the AES

P position,

mAp — the error in the difference of distances from the
observation point to two AES positions,

m, — the error in "declination" of the chord,

m, — the error in the "hour angle" of the chord,

mp — the error in the direction of the chord,

my — the error in the base of the chord,

my — the error in the base of the celestial chord (the
distance between the AES positions),

Mk — the error 1in the AES position,

M1 — the error in the position of the starting point,

MJ -— the error in the position of the observation point
to be calculated,

1 — the distance of the observation point from the plane
normal to the celestlal chord and drawn through its
center,

A — the angle between the planes,
¢ — the angle between the directions,

Yy — the angle between the direction and the plane.

Errors in the Observation Point-Satellite Vector

In photographic observations, the direction from the obser-~
vation point to the AES position is calculated by the two measured
values y and 6. The accuracy of calculating the direction will
be characterized by the value of the displacement vector, which
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is located in the plane perpendicular to the given direection and
which passes through the calculated point, or by the angular
value

Lot
AP =TF | (29.1)

where AB 1s the angle between the true and actually obtailned
directional position; dp is the displacement vector; and p is
the vector coincident with the measured direction.

For the mean square error in the direction Mg » we will have

l l (29.2)

where my 1s the mean square value modulo the displacement vector.

Then, differentiating the expression for the direction co- /123

sines (16.1) by the variables y, 8§, x, ¥, z and converting to the
mean square errors, we obtain

m}?lk = m,lk-f- m’”lk - m,,, = Mg, -i- c0s? § 5125 . " izgd ?)m :
Reproduce ro
Y

best available copy.

The mean square value of the linear directional displacement,
on the basis of (29.2), will be
(29.4)

My = Py,

In photographic observations, cases are possible when the
time of photographing is unknown and because of this, only the
declination of the AES position, rather than the two values which
characterize the direction from the point to the AES position,
is obtained from the astrometric processing of the photograph.
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The declination defines the surface of a cone with an axis
perpendicular to the equatorial plane, passing through the point
and AES position. Because of the error in the declination, the
surface of the cone deviates from the AES position. The conical
surface near the AES position may be interpreted as the plane,
tanget to the generatrix of the cone. In this case

m. = p,. Mg (29.5)
jo! ik Gik

but, taking (29.3) into account and assuming m§ = mé cos? ¢,

m = pik_i&- (29'6)

When the angular and linear measurements in space trilangula-
tion are combined, the spherical surface, defined by the measured
distance from the observation point to the AES position, may be
approximated in a priori accuracy analysis by the plane tangent
to the sphere at the end of the measured radius vector and,
consequently, normal to the latter.

In this case the error in the distance will determine the
position error of the plane

m, = i, (29.7)

If the photographic observations are combined with Doppler
observations, cases are possible when the direction to the AES
position and the difference in distances to this and another AES
position are calculated from the point. For a priori analysis of
the accuracy of triangulation structures, each measured value of
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the difference in distances (Ap) may be interpreted geometrically
as the surface of a double-surface hyperboloid of rotation, on
which lies the observation point and whose foci are the two AES
positions, the difference in distances to which 1s measured (as
the difference in focal radii). In thls case, the modulus of

the observation polnt-AES position vector may be defined as the
length of the focal radius of the hyperboloid.

Since we are interested in the elements of the internal
geometry of the space triangulation figure independently of 1its
position with respect to the geocentric coordinate system, we
use the canonical equation of the double-surface hyperbolold of
rotation

__;36;.:___.__:"_:;‘“..-1,. (29.8)

on the basis of which and of our assumed notations (Figure 42),
the length of the focal radius 1s
dy .1 '
Pih.,il:,:-"%z:—li%m-, (29.9)
where the sign in front of the second term is defined by the near

or far focus of the hyperboloid (the AES position) with respect
to the point.

Differentiating this expression with respect to Ap — the
measured value — and changing the mean square errors, we obtain
the formula for estimating the accuracy of the length of the
focal radius or the distance from the point to the AES position

mg, - ( déla = 2) M5 (29.10)

187

~
'—l
n
Ky

|



Simple calculations show that
disregard of the second term in
parentheses distortes the result
in the worst case by no more than
25%. Therefore, taking into
account (29.7), we can write
Formula (29.10) in the form

2 @z, (29.11)

= m? = =
mp = My, = Foe Mhe.

Figure 42.

The Position Error of the Plane

Since we willl assume that the synchronization plane passes
through one of the points and contains both directions, we will /125
artificially transfer the direction from the second point parallel
to itself by the value of the shortest distance between the
cross directions. Accordingly, the synchronization plane is also
shifted with respect to the second point by the value of this

distance mp. This displacement is the normed value of the free

term of the conditional equation of the synchronization plane and

may be obtained in the process of a posteriori determination of
accuracy.

The shortest distance between the intersecting straight
lines may be represented as the difference in the projections
of the displacement of the directions due to their errors on the
normal to the plane

Ap = A leosoy—| Ay, cos a,, (29.12)

where a is the angle between the error vector of the direction
ZH and the normal to the plane of intersection (the synchroni-

zation plane).
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Assuming that o 1s a random value wlth uniform distribution,
we obtain for the mathematical expectation cos? a

COéz(L%?E—:=—;~, (29013)

M (cos? o) ==

Converting from (29.12) to the mean square errors, we obtain

R
my - m,

m g (29.14)

2=
Y
Taking into account (29.4)

Pk m3, ;. -3y m}
2 _ 1k °2 ook
m? = - . (29.15)

With uniformly precise measurements

o

2

m? = = X (29.16)

™ty

ieq

The ratio of the values P1y and P2y in photographic obser-

vations does not exceed 2 in the case when an AES at an altitude
of H 2 1000 km is observed from one point at 1ts zenith, and
from another point at the minimum elevation above the horizon

(z = 70°). In all remaining cases, as well as when the altitude
of the AES 1ncreases, this ratio willl tend toward unity.

Substitution of the values Pik in Expression (29.16) for

the average distance from the points to the AES position, P

3

Py
even with the indicated maximum difference of values, Pyxk changes
the result by 10%. In most cases, thls substitution hardly
changes the result. Therefore, finally )

mp = ipcpkm..g.' (29.17)
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As when determining the error in the position of the synchro- /126

nization plane, we are interested in the deviation of the hyper-
boloid surface from the point through which-the latter should -
pass, for measured differences in distances. This deviation 1is
caused by the error in calculating the difference in distances,
corresponding to this surface. To solve this problem, the surface
of the hyperbolold near the observation point may be approximated
with a sufficient degree of approximation by the surface of an
asymptotic cone with a vertex in the center of the celestial
chord.

The canonical equatlon of the hyperboloid makes it possible
to derive an expression for angle @' between the real axis of the
hyperboloid (the direction of the celestial chord) and the genera-
trix of the asymptotic cone (see Figure 42).

¢ =actg)/ 2 —1. (29.18)

Linear displacement of the surface of the cone Ap from posi-

tion of the point, separated from the vertex of the cone by dis-

tance pcp’ due to a variation of the value of angle ', will be

by = Pady. (29.19)

Having differentiated Expression (29.18) with respect to Ap,
having substituted the result obtained into (29.19) and converting
to the mean square errors, we obtain an approximate formula for
the error in the position of the hyperboloid, which causes an
error in the measurement of the distance differences. This error
near the‘point may be consldered the error in the position of the
plane, tangent to the generatrlix of the asymptotic cone
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; =—d§—_‘:§%§-2—77229. (29'20)

Errors in the Chord Elements

During construction and analysis of the accuracy of space
triangulation, the figures and networks, formed directly by the
chords between the observation points, may be conslidered. However,
the chords and elements which characterize them are complex func-
tions of the measurement results and are obtalned in turn from
the elementary figures, containing — besides the two points —
the ends of the chord, the required AES positions.

As mentioned in Section 16, the direction of the chord is
calculated as a result of the intersection of two planes, each of
which is formed by photographic observations of a single AES
position from two points — the ends of the chord. Thus, the
elementary figure for calculating the direction of the chord con-
tains two pairs of directions from the points to the AES (four
pairs of measured values) (Figure 43).

The error in the direction of the
chord willl be calculated in a manner simi-
lar to the error in the direction from
the point to the AES position (29.3) by
the ratio of the dlsplacement of the chord

end My to its length D:
my == nzﬁ,—l—irzf\cos(l):v:%fi. (29.21)
Figure 43. Displacement of the chord end in a /127

plane, perpendicular to the chord direc-
tion (mH), is caused by the errors in the position of the synchro-~
nization planes, located in the same plane, intersection of which
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determines the direction of the chord. Consequently, to find the
value of chord displacement, the well-known formula for the error
in the position of the apex of angular 1ntersectlion 1n a plane
may be used

mi— P1 P2 A
Pl P: (29.22)
with consideration of (29.15)
202 .
2.; P (25.23)
n]ﬁ ] —ﬂﬁf—‘,——""‘_ =
2sin2 2, )

From Expression (29.23), we obtain the formula for the error
in the direction of the chord

2 2
Y -\ o
':}.J 05 mE (29.24)
2 _ o d=tket '

mi -._‘ 2D2sin? 2,

Displacement of the direction of the chord due to 1ts error
in uniformly precise measurements wlll be

el
me - —f-%f‘—?—‘——,_— m? (29.25)

md-=2olo ol (29.26)

and the error in the direction of the chord

2

A 2
12 w= j%l.“f_rii n12
My == prsme T (29.27)
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In the latter case p may be

cp
% k2
/////47\ expressed by the angle of intersec-
. o] tion ¢k for an AES (see Figure U4)
&\i /
N
\
, :/ \L]\'f"”'"y' Pep == e | (29.28)
’ 900}/1// —ZQ Iz 2sin —-g
From (29.27), taking into
Figure hi. account (29.28), we may obtain
m?
M+ (29.29)
2sin? X sin? -—f,‘-"-
This same expression may be obtalned by inversion of the /128

matrix of normal equations, which are formed in the figure for
calculating the chord direction.

Two synchronization planes, formed by observations of two
satellite posltions k; and k; from two points J, and J., are
shown in Figure 44,

Let us select a system of three-dimensional rectangular
Descartes coordinates such that the OY-axis 1s parallel to the
chord jiJ2, and the Z0Y plane equally divides the two-slided angle
A, formed by the synchronization planes.

Let us write the eQuations of the two synchronization planes
(k = 1, 2)

Fp=Ag cos A cos @} By sin A cos D -

’ ’ 4 Cp sin d =0. (29.30)
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Taking the fact into account that in the assumed coordinate
system, the angles which characterize the direction of the chord,
are A = 90° and ¢ = 0, we obtain from (29.30) the error equations:

— A dA4-CLAD LT, =,  welght Pk (29.31)

Each of the two equations (29.31) is a function of four
measured values; therefore, thelr weights are calculated by the

[ Ory )2 ( aF )2 ( oFy )2 ("aﬁk )2
pp=1: ((7\‘1’.1, 4 9651 i )\ 08

1 .
pvjlk pojlh p\’j,); péjsk . (29. 32)

formula

Let us set lel = v and 6311 = 63 then

Vi1 =’360°"—\’§ V5, 2 ==180°—7; ‘\’].22'——‘ 180° + 9 n ‘Sjlz =6j21 :_6].22 =§.
According to Expressions (29.31) and (29.32) and taking
into account the values of the angles, the matrices of coeffici-
ents K and of weights P of the correction equations assume the

form

~2tg § siny —sin 2y (29.33)
“cost & 0
P:.—.[2(sixnﬂysill?"ﬁ—i-pos?y) cod § ]._ (29-314)

0 2 (sin2 y sin2 § -~ cos? y)

Let us compile the matrix of coefficients of normal equations

N=KTPK
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and, having transformed it, we obtain the matrix of the weight
coefficients:

"sin?y sin2 8- cos? y 0 )
Q= Sillz‘y sin2 28 Sin?"\’ Sinz&{. cos? ')’] ) 2
0 . sin22ycost d ( 9.35 )

Taking into account the relations

sin y== ; cosyl——-—g——— ctg —gisin-% and 'sind=cos —(ﬂ—cos—g

D __
2pcos 2pcosd

we transform the matrix (29.35)

~
-
N
\O

Ao ) )
Q==| 4cos?—= sin? —g— I N

. ' 4 sin? 2 sin2 —{P— ' (29 . 36)

0 2 2 -

Directly from (29.36), 1ntroducing the error of unlt weight
U, we obtaln expressions for the errors in calculating angles
A cos ¢ and ¢, as well as those for the total error in the direc-
tion of the chord m C ' , B ’

B
m, o3 (4] = ,’J’ e —
2 cos 2 sin i
2 2
F £ L Y —
® 2 sin » sin & '
2 2 (29.37)
n B T —— —

sin 2 sin —g-)-

Z

Knowing that u = mB//E, we obtaln the same expression (29.29).

When photdgrapﬁic observations are combined with measured
distances, the elementary figure for calculation of the chord
base (assuming that the chord directlon has already been calcu-
lated) should contain the directions from the observation points
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to one AES position and the measured distance from one of the
observation polnts to this same AES position (see Figure 16,
where angles B are replaced by ¢).

Differentiating the expression for chord base

T sing (29.38)

with respect to pj), we obtain

apig - pit 29.
3 n“ﬁ;;j—l— ctg @y, dog; —— dg;. (29.39)

ik SN QL

When photographic observations are combined with measurement
of the differences 1n distances from an observation point to two
AES positions, the elementary figure for calculating the chord
base should contain, besides the directions from two observation
points — the ends of the chord — to two AES positions, and one
difference 1n distances, measured from one of the observation
points, to these AES positions (see Figure 16).

Differentiating the expression for chord base

SN (@1 -- Qi) $in (Qee @)

D= Ap;— X
i SIN @jy SIN(Ga2-{-@g2)—sin gy sin (Gig-i ¢jn) (29.40)
we will have
an  dAp - 1 |, \
D T TAp + Ap; (Pn clg @i, AQyy— Prz UG e, APy -1
L SO VR (29.41)
+ sin @y, dej, -- “siu @y, dg f'z) : :
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A value appeared in Formulas (29.39) and (29.41), which we /130
did not consider previously, the error in the angle between the
directions toward the AES — q$. Since the directions toward the

AES position are crossed due to errors, the angle between them 1s

formed only after they become coplanar, i.e., one of them will be

displaced parallel to itself by the value of the shortest distance
between the directions.

Assuming that the error in the angle will be equal to the
difference in the projections of direction errors on the plane

d(pr:(\IKH‘:illa‘)1—:(\Ixﬂl:ina)2’ (29.42)

and converting toméan square errors, taking into account (29.13),
we obtaln the expression for the error in the angle between

directions
'2 mgl—:‘nl:‘:
m;, = 5
' (29.43)
or with equally precise measurements
- mi =i} : (29.44)

The result should not be unexpected, since the error in angle

m¢ wlll be affected by only those components of the errors in the

topocentric coordinates y and 6, which are located in the plane
of the angle itself.

Formula (29.43) is general. An expression may be easily

obtained from it for the error in the angle formed by the direc-~
tion toward the AES of a chord and two chords.
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Converting to the mean square errors in (29.39) and using

(29.44) for m, and m¢1’ we obtain for the error in the chord

base, which depends on the error in the angular measurements and
the measurements of distances
2 D2 D2

m =mf,::-. - s 5
03 2 sin2 0%

p

2 2
><[(cos2 G+ —ka ) m? (co= G —Bi) m'i;] .
(53 Pik

(29.45)

Converting in a similar manner to the mean square errors in
(29.41), and taking into account Expressions (29.U44) for the
error in angles @, we obtain the expression for the error in the
chord base and, consequently, the error in the position of the
plane normal to the chord, as a functilon of the errors in the
angular measurements and measurements of the difference in

distances

2
2 2 D2 O Ptk cos? G -|- Pk +
mp = my= Ap?”‘ T2Ar e 2, ST
) k=1 (29.’46)

2
+mz“(mwwVwm~.
b sin? gy .

kel

30, Estimation of the Accuracy of Elementary Figures

The Error in the Vertex of Three-Dimensional Angular Intersection

The directions from two points to the vertex of three-
dimensional angular intersection, as already mentioned previously,
do not intersect in the general case due to errors and are
crossed. The distance of the trace of each direction in the
plane, normal to it and passing through the vertex, from the
intersection plane will be equal to |By| sin a, where A  is the
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shift in direction from the vertex
and o is the angle formed by vector
AH with the intersection plane

(Figure U5).

Intersection of the directions

will be possible after their reduc-
tion in the intersection plane,
separated from the point to be
calculated by the value obtained

as the mean weight of the dis-

Figure 45,

placements of both directions.
The mean square value of this value will be

= <_’L'_*> (30.1)

R P
2 mg --mi,

The projections of the direction displacements on the inter-

section plane will be equal to A cos a1 and AH2 cos a2, and

Hi
the projections of the directions will intersect at the inter-
section angle . The polint of intersections of the direction

projections will then be separated from the projection of the

true position of the vertex on this plane by a value which in

essence 1s the error in the angular intersection in the plane.
Therefore, we can write

‘ny;zi("ﬁfiﬁﬁq_ (30.2)

2 sin? ¢

The error in the position of the intersection vertex will
be calculated by the expression

& 0 2 e
A - 1 mp nmy my - L
g R . LT S M —) ,

) £ me Tsint g
mg + mé, sin? ¢

(30.3)
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and with equally precise measurements

2 a1 1
M? niy ("4— —** ‘é}ﬁ;;)' (30' u )

Taking into account that disregard of the value 1/4 in the
parentheses of Expression (30.4) will alter the value of the
error (reduce it) by a total of 10% in the maximum case (at ¢ =
n/2), for simplicity we may assume

2
my

M= ey (30.5)

The formula for the error in the position of the vertex of /132
three-dimensional angular intersection (Expressions 30.3 — 30.5)
is applicable when calculating the AES position by the directions
toward it from two observation points, or calculating the position
of the point by the directions from it toward two known AES
positions. 1In this case, My is calculated by Formula (29.4) and

with equally precise measurements.

Mj MS( !)_;*’lt,p;l,-z -' P;'?ln '{” f"ih, )~ (3 0. 6)

This expression may also be obtained directly by inversion
of the matrix of normal equatlons, formed from measurements of
the given figure.

Let angles y and §, which characterize the topocentric direc-
1
tions toward the satellite position k, be measured from observa-
tion points J:1 and j. (Figure 46). Assuming that 12 cos &8 =
Pg = 1, we write the equations for the errors in this construction

[Py, cos6,5 V6,5 Uy, cosa,
v, T K [dag; dyp; dzg]- (30.7)
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(subscript 1 corresponds to the
observations from point j,, and
subscript 2 — from point Jj.).

Let us assume that the chord
Ji1J2 is parallel to the coordinate
line oy', and the synchronization
Figure 46. plane jikj2 1s parallel to the

coordlnate plane z'oy'.

In the selected coordinate system, the matrix of coefficlents
of the equations for the errors in the measured values assumes the

form
-4 _
P 0 0
'0 __sing, cos §;
r _ ’ P1 p
K= -‘1— 0 . 01 . (30.8)
P2
0 sin&z cos 62

- P2 P2 -

Matrix (30.8) corresponds to the matrix of normal equations

-/ 4 ' . —
(—P_f +'Eg-) -0 0 '
N sm261 st 6 smé;coﬂi sin 6; cos §
0 5 ( ISR L (30.9)
smﬁgcoséz smﬁl coqa c0526 c 26
0 e 1 1 08% 0,
_ (35 )( +25)

where p) and p, are the distances from the observation points
J1 and J2, respectively, to the satellite position k..

By inverting matrix N, we obtaln the matrix of the weight

coefficients
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Al 0 0

0= 0 03 c0328; - p? cos2 &, p¥ it by cos §,—pisindy cox &)
sin? ¢ sin2 ' (30.10)
0 0} sin 8z cos 8, pF sin 6 cos & pisin? ;- Lpfsin2 §,
sin® ¢ sin2 ¢

where ¢ is the angle of intersection.of the directions for the
satellite.

Let us introduce the error in unit weight u = mY cos &

mg = ms/§, and from (30.10) we obtain the expression for the

square of the error in the satellite position:

- ok oi+pi 1
M3 ==p2 q§¢g4"$nh;)’ i.e., Expression (30.6)

Expression (30.6) is applicable for an analysis of the
accuracy of the position of the point, calculated at the inter-
section of the chord directions, which connect it to two other
points. In this case, the errors in the directions mB in Formula

(30.6) are replaced by the errors in the directions of chords mp s

and the distances to the AES positions pjk — by the chord
lengths DiJ. .
The Error in the Position of the Point Where the
Direction Intersects the Plane

Geometric interpretation of the effect of errors in the
direction and plane on the error in the position of the point of
their intersection is pfesented in Figure 47.
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From Figure U47 we have

5 A= A% B - (e-F D) (30.11)
but
b = AH cos G,
¢c = o cosec Y,
(30.12)
Figure A47. L
d =_Ap ctg v,

where ¢ 1s the angle of intersection of the direction with the
plane. '

Having substituted the values a, b, ¢, and d from (30.12) /134
into (30.11) and converting to the mean square errors, taking
into account Formula (29.11), we obtain the expression of the
mean square error at the point of intersection of the direction
with the plane

Tsin?y ° (30.13)

The formula for the error in the point of intersection of
the direction with the plane may be used for a prilori analysis
of accuracy of a rather large number of elementary figures.

Formula (30.13) may be used in photographic observations to
estimate the accuracy of the position of the point, calculated by
intersection of the chord direction, connecting it to one start-
ing point, with the synchronization plane passing through the
calculated and second starting point.
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In this case my 1s caleculated by Expression (29.26), and

m, — by Expression (29.16) and

DR (et
i (a4 St b))

YA sin2

(30.14)

The expression for the error in the point of intersection
of the direction of the chord with the synchronization plane may
be obtained with the aid of the inversion matrix.

Let two AES positions be observed from points i, and J
(Figure U8), as a result of which the direction of the chord 12
(angles A and ¢) is calculated by intersection of the two synchro-
nization planes. Moreover, a third satellite position k3 was
observed from points i, and j. The position of point J (i, and
i, are the starting points) is calculated at the intersection of
chord 1.,j with the synchronization plane i ksj.

z Let us select a coordinate
‘ system such that chord i.j is
; -Mj aiaﬁ parallel to the coordinate plane
/////& ¥/ 4 z'ox', chord i;j is parallel to
¢ §°, coordinate line oy', and the
‘2 synchronization plane i:ksj is

parallel to the coordinate plane

Figure 48, x'oy' .

Let us write the equation for the synchronization plane
iiksJ in the form
F= A3 A.’L'i”->*~33 A,{/i‘r{-C;; AZZ-”- = (),

(30.15)
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Equation (30.15) corresponds to the correction equation in
the form

Agdzj+ By dyj+Cadsj+ Wa=¢e;, weight ps (30.16)

where dx, dy, and dz are the corrections to the approximate coor-
dinates of point j; ps 1s the welght calculated by Formula (29.32),
replacing the subscripts k by 3 and J: by 1,.

The correction equations for ahgles A and ¢, which character-
ize the direction of the chord 1,Jj, have the form

acos®dzt-beos D dy 1, 5=y cosq3 Welght Ppcosm
(30.17)

cdz ddy+-edz-1-lg ==vy,; welight »q.

In the assumed coordinate system, the coefficients and weight /135
of Equation (30.16), as well as the coefficients of Equations
(30.17), assume the values

A=0; B==0;
C=sin (YVjp, = Vi,p,) = SiN Gy,
) 1
P3== ’:“"""_':’}F;" »
2D, j cos? —5~ (30.18)
sin®
a=0; b j;;;— ’ - —“17;-—}— ’
cos M
d = T e

0; T

By introducing the welights of measurements Ps = Py cos & -

1/u% = 1 and using the first two expressions of (29.37), we have

2

, Ao
Py cosqp =14 cos? '5‘5“1? 5

(30.19)

R P
=4 sin? —-gin2 -,
Pa 2 2
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Finally, the matrices of the equations for the errors K and
welghts P for the construction considered assume the form

- 0 0 —singg ™~
0 1 0
K= "D, , (30.20)
sind o eos®
D D, .

— i:/" 133 —_

ot 0 .
2D§l cos2 %
P = A . (30.21)
: 0 4 cos? -5 sin? -5 0 |
. . . 0 }‘ ' [ ¢3
_ 0 0 4sin? —- sin? L _
T
Inverting matrix K "PK, we have
=1 0 —Dj,;elg @ -
in2 .Y 9 sin2 .
2 sin’ T 2 bln-_—z-
0 D} ; : 0 -
Q= . 4cosﬁ——;‘—si11‘~’—q;—3 i - (30.22)
piolgd D, D3 jcige @
;——Q’- 0 I Y P
2sin? —- : 4sine @ sin2 Y sin?~- © 2sin?—- _

4

From (30.22) we obtain the expression for the sduare of the /136
error in calculating the position of polnt J

G5 o . s . A
2 --‘.-;o~ sin?y  4sin? -?- sin? -—- sin21
2 2 2

4_‘ D3, ]

52 7}” s.in‘l Y

. 2 Dlgll' 'D%l
Mj=,u[ -+ 2 .
2sin
(30.23)

[«
<
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where ¥ is the angle formed by chord i,j with plane i;ksj.

The error in the AES position — with synchronous calculation
of the direction to it from one observation point and declination
from another point, or the error in the observation position in
a calculation of the direction from it toward one known AES posi-
tion and declination of another point — may also be calculated
by Formula (30.13). In this case, the error in the position of
the plane should be calculated by Expression (29.6). The error
in the AES position in this case will be

L]

2 3. 102
My T3 (o Bt ) (30.24)

2 sinz

When optical measurements are combined with Doppler measure-
ments, the elementary figure for calculation of the position of
the observation point in the direction toward one known AES
position and the difference in distances to two known AES posi-
tions may also be regarded as intersection of the direction with
the plane. 1In this figure, the surface of the asymptotlic cone
of the hyperboloid, corresponding to the measured difference in
distances, may be regarded as the plane, tangent to the generatrix
of the cone, near the point. The error in the position of the
point may then be found from Formula (30.15), which in the given
case assﬁmes the form

A712 1 "ogpkx.i ) .
M= ST [ P p— Mipy, , + (1 -+ sin® ) pﬁ,m%] . (30.25)

When the direction from the point is measured at one of the
two AES positions, to which the distance differences were calcu-
lated, we can use the value of the angle ¢ between the measured
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directions to the AES and the direction to the center of the o
celestial chord in (30.25) instead of angle V.

Let us consider another method of deriving the formula for
the error in the position of the point from the measured differ-
ence in distances to two unknown AES positions and observation of
vy and 6§ from it to a single AES position.

Let us select a coordinate system such that plane kiJjkz is
parallel to plane z'oy', and direction kikz is parallel to the
coordinate axis oy' (Figure 49).

7 Let us conslder the problem of
y ok, calculating the position of point j,
\met::>/{/{ assuming that the position of points
, \\f v o k; and k; 1s known. The matrix of
T%// i S coefficients of the equations for the

errors in measured values (y cos G)sz,

Figure 49. 84k, 204 Ay  in the given construc-

tion has the form (subscript j is
ommitted for simplicity)

-1 . T

K-—E sin 6, 058, . (30-26)
Pz Pz
0 cosy-fFeosd;  sindy-sinfy

As in all preceding constructions, let us assume that Ps = .

p = 1. Then

Y cos ¢

== -~~’«l-2-—~- =3 ———--—-v—‘——vzz crem sz ]2
Pao mi, | PRU—CsE T (30.27)
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where k 1s the ratio of the errors in the angular and linear
measurements; and ¢ 1s the angle of intersection of directions
Jki1 and jk..

Accordingly, the weight matrix assumes the form

| lo 1o (30.28)
0 0 12

Taking into account the equalities:

83 -}- cos 85 =-cos &> (1—cos sin@sin§;=m,
cos §;-}- o5 §; =:¢08 6 ( 08 @) - si 2 (30.29)

sin 8, — sin 8; == sin 8, (1 — cos @) -—sin ¢ cos §p= 1
we compile the matrix of coefficients of the normal equations
N=KTpK (30.30)

and, transforming it, we 'obtain the matrix of welght coefficients

~ i 0 0 -
052 8y - 1223 sin §; cos 8- 12mnps
Q= 0 2(1—-cosq)2 12 (1—cos q)? (30.31)
0 — sin 8, cos 8; 4 12mnpd sin® 8, - 12m2p%

12 (1 —cos @)2 12(1—cos ¢)2

Introducing the error of unit weight u, from matrix (30.31),
we obtalin the expression for the square of the error in calcu-
lating the position of a point in the given construction

1
]VII.__p,2p2(1+ = cOSq))+(l—,L§(‘:~ ER (30.32)

{

Taking into account Formula (30.27), Expression (30.32)
is transformed t6 the form

y o 1 1-}-cos
My =pepd (24 o P 5.

(30.33)
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To estimate the accuracy of all
types of three-dimensional linear-
angular intersection, it is expedient
to use angle ¢ between the direction
and the line whose length is calculated

(Figure 50), instead of angle ¥ between
Figure 50. the direction and the plane in (30.13).

~N
|—l
(o8}
o

In this case in Formulas (30.13), sin ¥ is replaced by cos @

and Formula (30.13) assumes the form

T m2 (30.34)

Formula (30.34) is applicable for estimation of the accuracy:
(1) of the figure for calculation of the AES position by the
direction from one point and the distance from another observation
point; (2) of the figure for calculating the position of the
observation point by the direction from it to one known AES
position, and the distance to another point.

In the latter case, mp is calculated from Expression (29.7T)

and the error in the position of the point will be

. & m3tm ) (30.35)

M =m

cos?g

Formula (30.35) may be obtained in a somewhat different form.
If angles a1 and 81 in the construction shown in Figure 46 are
measured from point ji, and the distance p» is measured from
point j2 to the satellite position k, then in the assumed coor-
dinate system the matrices of coefficients of the equations for
errors K and weights P assume the form
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-1
o 0 0.
K= 0 __sin8;  cosd;
. b M
0 —cosd, sin$, | (30.36)
B [
p_| 0 1 0.
1 o0 2

= T e

Inverting the matrix of normal equatlons

-, N=KTPEk=
o 0. 0
sin2 §; #2c0s2 8, #2 sin 6, cos §, sin §; cos §;
~| o , - (30.37)
[ + 03 : (2 + - ’
#25in 6 cos 6y sin 6y cos § cos2 §; #2sin2 &,
0 — 4 - —_— —_——t
_ o ” 1 o} (4 + [ -

we obtain the matrix of coefficlents, from which it follows that
the error in calculating the position of the point (if the AES
positioﬁs are known) or of the satellite (if the positions of
the points are known) is equal to:

prep (o1 500, (30.38)

#2cos2
where k 1s the error ratio of the angular and linear measurements.

Formula (30.34) is also applicable for analysls of the accur-/139
acy of the AES position, calculated by the direction to it from
one point and by the difference in distances to it and another
known AES position from another point. In the latter case, mp

is calculated by Expression (29.11) and the error in the AES

posltion is .
2 4212

g m3 -+ o

2 8 cos2 @

(30.39)
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If the directlon and distance are calculated from one
starting point (polar intersection), angle ¢ vanishes (y = 90°),
and Formula (30.34) assumes the form

arr=nd mo (30.40)

Expression (30.40) is used for estimating the accuracy of
the AES position or the observation point by the direction meas-
ured from the point and by the distance to the AES position.

In this case the error formula assumes the form

(30.41)

2__ 2
My=p}m2 +m3.

For this same case, from Expression (30.38) we obtain

MFPPVH;% (30.42)

and, when the relative errors in measurement of the distance and
angular values are equal,

Mi%ub‘i’s_r - (30.43)

When calculating the AES position by the direction to it and
by the difference in distances to it and another (known) AES
position from the same point, the error formula for the AES
position, on the basis of (30.39) will be

T o (30.44)

Mi=p>mi+
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When calculating the position of the point by the direction
and base of the chord, the error formula for the position of the
point will be

' M= mpD? +nib,

(30.45)

in which the expression for my 1s taken from (29.27) or (29.28),
and my is calculated by Expression (29.45) when measuring the

distance to the AES, or by (29.46) when measuring.the difference
in distances.

Formula (30.13) may be used to estimate the accuracy of the
position of the point of intersection of three planes, 1if this
figure is considered as the intersection of one of three planes
with the line of Intersection of two others. Then, for inter-
section of three synchronization planes, each passing through
the calculated and one of the starting points,the error in the /140
position of the point is described by the expression

2 2
N, R
N }1_, my ( 3 I
AL U S B ) ; 0 Lt S
'\1"7:::—‘-; p+__;~i1x2 ).+"’.p=_ —m e +- 2'sin? Ay T, - (30.46)
ST 2sin? A sin2y “12sin? Aqe sin3 Y3

where A 1s the angle between the synchronization planes, formed
by AES positions k; and k2, and Y3 is the angle between the line
of intersection of these planes and the synchronization plane,
formed by the third AES position (ks).

Cases are possible when, due to the absence of precise time
at the observation point, only the declinations of the three
known AES positions, rather than the directions from it, will be
calculated. Then, taking into account (29.6), the expression for
the error in the positlion of the point will assume the form
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0%, P,
M2 — m3 [pl’h F0%k, |, 2sinfl, + Oy (30.47)
: J_——‘T 2 sin? A T Sl[lzq‘) T °

Similarly, when calculating the position of the point by
three differences in distances, calculated from this polnt to
three pairs of known AES positions, taking into account Expression
(29.20) and assuming the relative errors in the differences in
distances to be equal, we obtain

2 i P’ "’
G PEpd® >-J TdiagE: .
. | & Eomr X +(25), (30.48)
MI— map] k=t N 2<1n~k 2—Ap% )z, |,
T a2 2 Sing A 1 Sin2

where K is the number of the pair of AES positions to which Ap is
measured.

In the latter two cases, A 1s the angle between two planes,
tangent to the generatrix of two conical surfaces, and §y is the
angle between the line of intersection of these planes (or tangent
to the line of intersection of the conical surfaces near the point
to be calculated) and a third plane, tangent to the generatrix of
the third conical surface.

The same Formula (30.13413 applicable for analysis of the
accuracy of three-dimensional linear intersection in cases when
the point or the AES position 1is calculated by the three measured
distances or when the AES position is calculated by the three
lengths of the focal radii.

If we assume that the relative errors in measurement of dis-
tances are equal, Formula (30.13) will assume the form
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pi-t-e3 | .
nﬁgﬁi[ﬂ+ﬁ4_nm%2“*,

p? L 2sinZ ¢y sin? Y

(30.49)
where @,, 1s the angle between two lines by which the distances
are measured; and Ys is the angle formed by the third line with

the plane passing through the first two lines.

When using the focal radii, mp are calculated by Formula
(29.11).

The Error in the Vertex of Instersection of Three Planes

As was shown, Intersection of three planes may be regarded
as intersection of one of the planes with the direction of the
line of intersection of two others, and for estimating the accur-~
acy of calculating the positioh of the point of intersection,
Formula (30.46) may be used.

However, 1t 1is expedient to consider another derivation of
the formula for the error in the point of intersection of the
three planes.

The coordinates of the intersection point are found from
solution of the system of equations for three planes

AX 4 B)Y 4 CZ—D, =0
AX 4 ByY -2 CoZ— Dy == 0 (30.50)

or after transfer of the origin to the point to be determined and
normalization of the coefficients and the free terms of equations
AX L BY - CiZ —dy =0
AL X+ ByY' 4 ChZ' —dy=0
CALXT - BLY' --CiZ —ds=0.

(30.51)
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In Formulas (30.51) the normalized free term is the error in
construction of the glven plane. Its mean square value 1s calcu-
lated by Formula (29.16) (for mp). In matrix form, Expressions
(30.51) are written

AX=d, (30.52)
Hence,
X=4%a (30.53)
and, according to (27.1)
'M}=(A'1)M;(A‘1)T- | (30.54)

In expanded form (30.54) is written

. Ly L L[ 0 0 [L, M, N
My =\ M, M, M| 0 mg), ol-lr, M, N, (30.55)
_ Come,

A’l ]Vz J\T O _ I 3 11[ 3 l\’rg

where m . is the mean square error in the construction of the /142

~given plane; Li’ Mi’ and Ni are the direction cosines of the lines

of intersection of planes Q2 and Qs, Q1 and Qs, Qi1 and Qz respec-
tively; and A is the determinant of system (30.51).

Let us expand A with respect to the elements of the first

row
By Ch Cy A 4; B
A= A2 2l g2 L e |2 2| __
s~ il sl lall
= AiLy+ B, + OO, = SEE BN GNG _ sinty (30.56)
M .1' . vl
where A1 1is the normalizing factor
A'l: 7‘.—___1—_-"—"._';,
V L3+ A3 N2 (30.57)
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¥ is the angle between plane Q; and the line of intersection of
the other two planes Q2 and Q3. If the determinant A 1s expanded
with respect to the elements of the second and third rows,
similarly, we will have

A SDN2_ sinys (30.58)

1.2 /13

After multiplication of the matrices contained in (30.55),
we obtaln the following expressions for the diagonal elements of
2
matrix M x*
mk == -—51—2— (% mf) -1 %22; ”5, -+ —];:%— nf);.) ,

1 My M,
2, = {22 g2 2 2 o8
m Y’ =" ! ) ( ;.% "Ipl i }‘g ’np: H }\'2 pg 2

(30.59)

..
=
" chiojen
*
~
I~
v
N’

Hence, taking the fact into account that L'12 +'M'12 + N'iz =

1, and also Formulas (30.56) and (30.58), we obtain the final
expression for the error in the positlon of the vertex of inter-
section of the three planes as a function of the measurement
errors and the geométric characteristics of the given intersection

_ ’ meys o . myy; m’J_ d m3 -
MQ =mle+m’Y'+ m%l=-—si-n_a%ll.i_ sinﬁ‘xf;zz_}_ Sinz‘{)p:_i 1 _si_.anz%%‘ (30 ..60 )

Formula (30.60) is used for analysis of the accuracy of the
vertex of several elementary figures whlch we considered above,
first, for analysis of the accuracy of the position of the obser-
vation point, calculated at the intersection of three synchroni-
zation planes. In this case mp is calculated by Formula (29.16) /143

or (29.17) and the expression for the error in the position of

the point wlll be
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sin2y§

3
]U?'—"m%}: .)"?_P (30.61)
k=

Further, Formula (30.60) may be used to estimate the accuracy
of elementary figures which are the intersection of three conical
surfaces considered near the point to be calculated, as planes
tangent to the generatrix of these conical surfaces. Such figures
occur when the positlion of the point 1s calculated by the declina-
tions of three known AES positions measured on it or by the d4if-
ferences in distances measured from it to three pairs of AES
positions. In the first case mp is calculated by Expression

(29.6), and ¥ is the angle between the direction from the point
to one AES position and the plane passing through the direction
from the polnt to two other AES positions. In the second case

mp is calculated by Expression (29.20), and ¢ is the angle between

the line connecting the point with the center of the celestial
chord between one pair of AES positions (the difference in dis-
tances to which is measured) and the plane passing through the
lines connecting the point with the center of the celestial chords
of two other palrs of AES positions.

The expression for the error in the position of the point in
the latter case has the form

M= j%(@ﬂ %5;:h ) (30.62)

K=1

where K 1s the number of the pair of AES positions.

Formula (30.60) may be used for a priori estimation of the
accuracy of the position of the vertex of all types of three-
dimensional linear intersection in space. Such intersections
include figures which occur upon calculation of the AES position
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by the distances measured to it from three observation points,
upon calculation of the position of the polnt by the distances
measured from it to three known AES positions, as well as upon
calculation of AES positions by the differences in distances
measured from the observation points to them, and at the same
time — from the lengths of the focal radil of the hyperboloids.

The value of m, in Expression (30.60) in the first two cases

is calculated by Formula (29.7), and in the third case — by
Formula (29.11).

The quantity ¢y in these figures is the angle between one
line whose length is measured and the plane passing through two
other lines (one focal radius and the plane passing through two
other radii).

Thus, for example, the error in calculating the position of
a point by the distances measured from it to three known AES
positions will be calculated by the formula

3 2
mz,

Ao 2 - (30.63)

ket

31. The Effect of Errors in the Position of Starting Points /144

The effect of systematic errors in initial data, which caﬁse
a general shift of the entire triangulation or in the presence
of more than one starting point — a general shift, rotation and
an error 1in the scale of space triangulation is well known.

We have given approximate consideration below to the effect
of random errors in the position of starting points and this
effect on the previously derived formulas for an a priori esti-
mation of the accuracy of the elements and figures of space
triangulation.
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Effect of Errors in Starting Points on Errors in
Triangulation Elements

An error in the positlion of the point in a three-dimensional
coordinate system may be represented by the expression

 Mi=mk —l—m%;—{—m%.; (31.1)

If the components of errors on the coordinate axes are
assumed to be equal, we may assume that, independently of the
direction of the coordinate axes, we have

M2 =3m2. (31.2)

On this basis, the error component of the starting point
position in a direction moving away from this point, and, conse-
quently, the effect of the error in the position of the point at
a distance measured from it, or on the plane passing through this
point, will be

- (31.3)

The error component of the position of the starting point in
the plane normal to the dfirection passing from the point, and
consequently, the effect of the error on displacement of the direc-
tion passing through the point, will be '

mi =2 M3, (31.4)
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We should especlally discuss the effect of errors in the
positlion of starting points on the errors in space triangulation
elements, obtained as a result of measuring the differences in
distances.

The error in the length of the focal radius depends on the
distance between the observation point and the plane passing
through the center of the celestial chord (1), i.e., on the dis-
placement along one of the coordinate axes. Having differentiated
Expression (29.9) with respect to 7 and converting to mean square
errors, assuming that mzZ = Mzi/3, we obtaln the error in the

length of the focal radius due to the effect of the error in the
position of the point

d2
7)1?:————3A.0‘2 M?. (31.5)
The characteristic of the hyperboloid 1s the angle ' /145

between the surface of the asymptotic cone and the axls of the
hyperboloid (see Figure U42). It is obvious from Formula (29.18)
that angle @' depends on the length of the celestlal chord 4.

Having differentiated (29.18) with respect to d, substituting
it into (29.19) and converting to mean square errors, assuming
that m2d = 2/3M2k, we obtain the error in the position of the

plane, with which we approximate the asymptotic cone, caused by
the effect of the error in the length of the celestial chord,

 2p€pAp*
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The effect of the errors in AES positions, which are the
foci of the hyperbolold, may also be reflected in rotation of
the axis of the hyperboloid, which imparts an additional displace-
ment to the hyperboloid surface, equal to

2p¢
m? = %0 M. (31.7)

The total effect of errors in the AES position on the error in
the position of the hyperboloid will be -

203
m; = s Mb (31.8)

Moreover, we should remember that, since the vertex of the
cone 1s not the AES position, but the center of the celestial
chord, the total displacement of the surface will be

2% ; 1\ M}
.m; = Ei%&?+~7)7§u (31.9)

Effect of Errors in Starting Points on Errors in the

Position of the Vertices of Elementary Figures

For the main types of elementary figures considered previ-
ously, the effect of errors in the position ofvstarping points on
the position-of the calculated points may be fepresented in the
following manner.

For three-dimensional angular intersection

2
1 MM MM AL VN g
‘Mz:? (M{-I—Mg—*_ slinztp z) =3 (4 +Si112(p) gégle‘ (31.10)

or with equally precise initial data
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MEe 2N © (31.11)

3 sin? ¢

For intersection of the direction with the plane

M3 R AL,
Mz":"%‘(M?!”{"—sﬁf‘ii:") (31.12)
or
2 M
1‘[2 :‘:.'(1 ‘I“ sin?\p)_.—?»—' ‘ (31°l3)
For linear-angular intersection
/2_“ 1 42 1 DI?2+A131
M ---—3—(Mi, + co;é(T) (31.14)
; .
or
i 2\ MP
Af“-:(i —I—Eosgg)—g—‘. (31'15)
To calculate the position of the point by the polar method
{ . .
M2 =M. (31.16)
For intersection of three planes or three-dimensional linear
intersection '
12 M3
Mi= - d
3 in2 1
& (31.17)
or
oM
M= 3Siniq) )
: i-‘:] i. (31018)
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Taking into account the dependence of the previously
obtained errors in the elements of space triangulation, construc-
ted by using the measured differences in distances, on the errors
in initial data (31.5) and (31.8), we reduce the formulas of the
total effect of errors in the initial data on the accuracy of the
two main-fgﬁés of elementary figures of such triangulation.

For a figure for calculating the AES pésition by the direc-
tion to it from one polnt and the difference in distances to it
and another AES position from another point, we have

M3 ’ a2
3 __ i . 3
M2 = 30052({)(2 4- cos (p—*—Ap2

) (31.19)

For a figure for calculating the position of the point by
the difference in distances from 1t to two known AES positions
and by the direction to the third‘known AES position, we have

M3 20%p

3 .
M= g (5 Hoint b ). (31.20)

32, Combining the Formulas for A Priori|Estimation of’
the Accuracy of the Elements and Elementary
Figures of Space Triangulation

For convenience in using the formulas for a priorl estimation
of accuracy, let us reduce them to a single table for a further
analysis. ' ‘

For 1llustration, the main figures in Table 1 are represented
by diagrammatic drawings with the following notations:
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starting point;

calculated point;

known AES position;

calculated AES position;

direction from the polnt to th; AES position;
declination of AES position;

distance from the point to the AES position;

difference 1ln distances from the point to two
AES positions;

direction of the chord;

length of the chord.

In Table 1 the formulas for a priorl estimation of the
accuracy of the elements and figures are first presented only for
photographic measurements, then for combinations of photographic
observations and measured distances, and for combinations of
photographic observations and the differences 1in distances.

33. The Effect of the Number of Measurements on the

Results of A Priori Estimation of the

Accﬁraqy of Space Triangulation Figures

We call the figures

containing the minlmum number of measure-

ments required to obtain a result — for calculation of the posi-

tion of the point or the

— an elementary figure.

value of some space triangulation element
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TABLE 1

?gémgia Calculated Elements | Diagram Formula
32.1 Calculation of Photographic observations
- me 2 CM3
synchronization plane /k m; =:_-2_.~5([,2+(,3H__LNNM,,3Jr 1
(o \Aj 2
' Z P%Pk
I i my=Trswr "
K,
32.2 Calculation of P
chord direction NGz,
ks With a symmetric figure
- ' 202 m2
m2= _:‘_cp m? = 8
) B Disinz), T 2sin27ysin‘~’%‘5?
32.3 Calculation of the posi-|  , (Pﬂ”""r“M”)((""m”-{-*M) (Wb nd by Ol |
tion of the point (AES) | "~~~ | M=% T ~
of three-dimensional ko/“" (Px+9)’"n+“(1” + M) E
angular intersection Lo ' o2y, m3 -2 373
cppls i i
in space ot )[pc,,km=+-;~<m+ Y
32.4 Calculation of the posi- !
tion of the point of . k M= 1,1
sequential three-dimen- [io—"/ ~~_ | (4 ““ﬂ%>[ ( “%wgyw“] ity ( +3va)x
sional angular inter- . *,///A - pﬁ4~%.sAf&- n
:eggi;gtirilcsigigﬁrévgith - 0% X(z+-—“sinmk)(f”x,+f”§>~ STV A ETITE A A
. 1, 1
32.5 Calculation of the posi-| . | =T+ [P i+ |~
tion of the point at the| " "<, ' 1 { 208p; 2 ﬂ
intersection of the . ! ~sinte szup"%*'sﬂh
chord directions 2
~
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TABLE 1 (Continued)

No. of

formula Calculated elements Diagram Formula
32.6 Calculation of the AES o~ - | _
position by the direction e Aﬂzzu+4hﬁwnﬁ+p%m3+(1+%Uﬁ?)M?+ﬂ@
from one point and by the| i°7 ? R 2sin2y 3sin® ¢
-declination from another
point .
. | S : [ |
intersection of the . A oSty E 3
chord direction with T
the synchronization B !
plane - s i 5
kow. ' N = pm2d-o M2 AN
. . N 1
32.8 Calculation.of the posi- | __ . "=, Me=:§g-3“—igii_fan%% ity M) i
tion of the point by the | ' =} S ° LT
declinations of three ke” '
known AES positilons i
12
2 2.1 __°
32.9 Calculation of the posi- | . _ « e O Pty
tion of the point at the ! - gt st
intersection of three TR . sl fpsind g \
synchronization planes o1, M%Ismzwau. “mqu23]pcwﬁ [ T (M3 +1py_v§h
Combinations of photographlc obseryations with distance measurement
32.10 Calculation of chord =¥ my, 4 oy p? o
Length AN B S S R G



TABLE 1 (Continued)

n
n
@ gg;mgia Calculated elements Diagram Formula

32.11 Calculation of the posi-
tion of the point (AES) : o e . PP N
by the direction and ko=—w—ma Mi=p2mgtmit+ My=— (2+72—)
distance .

32.12 Calculation Of the posi_ ) ]u-’_y__ e (p[“’! cos® (P)Pl ",2 I-’" '__(1 !‘(‘O‘-‘QS) 1111—1 1[2] -
tion of the point by the | " —,, it 103 oaan
direction to one known hw/”ﬁ/ "“( w¢afg (M F”&ET{‘

AES position and the dis-
tance to another position

32.13 Calculation of the posi- /153
tion of the point by the M2 o= D234 B3
direction and length of e P BTED
the chord \ .

{

32.14 Calculation of the posi-| ;o ., f%gfﬁﬁv<m2kiﬂp>wfw

tion of the point by the - / sinfp T\TF TGk €§¥<ubm

distances to three known
AES positions

Combinations of photographic observations with measurement of differences ih distances

32.15

32.16

Calculation of chord
length

Calculation of the AES
position by the direc-
tion from one point and
by the difference in
distances from another

]

point

i O — A

N4

m

b

Pl 08° PPy cos® pp1-pJ, s (P2z cOS Qi —Plk)z
lmz? T2 [m§ 2 sin? @ Tm “1 sin? ¢

1 (1+cos2@p)p}f , d2 .
M:1= cos? g { 2 My Apt mAP+

+3 [a+oos o a1+ ( 1+ ) M3
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TABLE 1 (Continued)

No. of
formula

Calculated elements

Diagram

. on

Formula

32.17

32.18

32.19

32.20

Calculation of the AES’
position by the direc-
tion and difference in
distances B

Calculation of the posi-
tion of the point by the
difference in distances
to two known AES posi-

tions and by the direction
to the third position

Calculation of the posi-
tion of the point by the
difference in distances

to two known AES positions
and by the direction to
one of them

Calculation of the posi-
tion of the point by the
differences 1n the dis-
tances to three pairs of

known AES positions.

-
-
-

M=

Me=

i

1

sin2 -1

: M2 ~—p '"ﬁ"r a7l

sin®

1

[

P 03

lnAo—I-(i—l— 3ApE ) M3

pcp

sin2 ¢

0
[Sm;p 1p:‘,m"—%

3

% sty [
sin? d-_.

P! q’k Ap2

o 2
== pip,, (mAP - 3 M2

3
—Ap®

- ;f@
l-( d? —Ap* + 2

mﬂA?+ ( —}—sm (p+—~—-~~

)E (d———Ao 2) sin® @p

Ap2
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The appearance of excess measurements in the figure should
lead to variation of the previously derived formulas for estima-
tion of accuracy. As we know, excess measurements in all cases
increase the accuracy of the result, but the effect of an in-
crease in the number of measurements may be different.

In order to establish the effect of eXcess measurements
on the formulas for an a priori estimation of the accuracy of
elementary figures, let us present an expression for the error
in the elementary figures in general form as

M;= %, Qumni, (33.1)

i
figures and Qi = 1/pi are the weight coefficlents.

where m, are the errors in measurements of the elements of the

Let us conslder an increase in the number of measurements
of elements of the figure without variation of its geometric
shape.

If some element of the figure 1s measured repeatedly,
assuming that there are no systematic errors in the measure-
ments, the error of the calculated measurement may be

2 L

- 1 .2
S (33.2)

m
where n is the number of measurements; and Me is the error in
single measurement of the element.

If the measurements are equally precise, then

2

m? == 2L (33.3)
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It is more complex to calculate the effect of excess measure-/154
ments, which vary the geometric shape of the elementary figure.

Most of the figures which we considered are intersections,
and their excess measured elements are geometrically interrelated
in different ways. Since consideration of the effect of element
errors on variation of expressions for the errors of elementary
figures is rather complex, we will consider the simplest cases
here. ’

If the elementary figure for calculation of a chord is con-
sidered as the intersection of two planes, and intersection of
three planes is reduced to intersection of the direction with the
plane, then, along with the figure for the intersection of the
direction with the plane and three-dimensional angular intersection,
all these elementary figures are formed by two elements, and
should contain a term of the following form in the formulas for
a priorli analysis of accuracy

M2=Q (m3, +m?), (33.4)

where Q = 1/sin?y characterizes the geometric relationship
between the measured elements.

An increase in the number of measurements above the two
required to a number n increases the number of angles between
the pairs of measured elements, which becomes equal to the 2 (c;)
number of combinations, out of n.

To obtain the approximate expression for estimating the
accuracy of such a non-elementary figure, let us use the formula
obtained by Professor K. L. Provorov [44], for the error in
multiple angular intersection
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M= g (33.5)

a ! o

or with equally precise measurements

72 _ nm3
M=g——. (33.6)
21} sin?y, ,

On the basis of Formula (33.5), we find the expression for
estimation of accuracy for some basic space triangulation figures

contalning an excess number of measurements.

Error in Chord Direction

Usually, as a result of prolonged observations of space
triangulation from each pair of points — the ends of the chord
— a rather large number of AES positions will be observed synch-
ronously, and the directlion of the chord will be calculated at
the intersection of n synchronization planes.

The error in the direction may be represented by the /155
expression
n
n Y |
S m " (3 0lp,
1= =]
SO = U0 SN SN = e (33.7)
D - sin2? v osin® 7y
Zf Egma 3 Py, Loy,
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In the case when the average distances are similar, and the
synchronization planes corresponding to the AES positions are
uniformly located around the chord within the limits of the maxi-
mum angle between their extreme positions, equal to Q,

. npgpém;
Mp == 57 : * | (33'8)
D2§ (n—c) sin2 (—-Q—)
o - n—14
c=i .

We may present one more simple approximation expression for
the error in the chord direction, derived by Lambeck [57] for
uniform disﬁribution of the observed AES positions with respect
to the center of the chord

™ = Gd7n (33.9)

Error in Chord Length

We previously considered the elemenfary figures for calcula-
tion of chord length, in which the measured linear value was the
distance from one of the points (32.10) or the difference in
distances from one of the points (32.15).

Measurements of the distances and differences 1n distances
from both points — the chord ends — are essentially possible.

Then, upon measurement of the dlistances, the error in the
chord length will be calculated by the expression
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—— S
D2 0% - Pe sin2qy

m2, m2 1 14 cost gy - cos?qy .p_‘i:’_{fii
2 cos? gy, -

(33.10)

. 2
€OS (@ ———--PU" COS ( __.&"_
ok P Pk
i 2

‘1 mpli.
(cosqk—w ’) |- (o:q,— Fl‘)
P2k 1k -

We can present a simplified expression for the error in chord
length, derived by Professor I. D. Zhongolovich [20], provided
that the error in the chord direction, obtained from a consider-
able number of observations, 1s negligible, compared to the errors
in measuring the differences and directions to the AES in the

+

given figure.

myy = (cos? @; -} cos? @) m3-}- 2h3m3,

(33.11)

Lambeck [58] presents the following expression for the error /156
in chord length (in the notations of Figure 15)

m3, (A(/ — B2)

YT AT TTTED mh (33.12)
where
A=qr ctg? By + sin2 §;
Tsing By \m‘ ﬁ, sz Be ’
C=1+ Zt;: %k + sm:;;: sﬁ:-'ﬁk

If the differences in distances from both points — the chord
ends — are measured by the differences in distances from the
point to two AES positions in the figure for calculating the
chord length, the error in chord length will be calculated by
the expression
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m2 1 m§

0 .
D BT i 591 +
my, | mi,, 2 + 2
' ' N 01 €082 Qi -p2p ) Pl OS2 g |- pin
d sin2 gy sin? @y
ki:i e k=i . (33.13)
B
'I" A 2
A 01 + Apz

2
> ( D1k COS Qp——D2 ) }1 (Qg COS Qp— P12 )2
4 sin @p A £ sin g

h=i

When calculating the length of the chord from several such
figures or elementary figures, its error may be calculated accor-
ding to Expression (33.2).

Error in Three-Dimensional Angular Intersection

When calculating the position of the point, the formula
for the error in the vertex of three-dimensional angular inter-
section n of the directions will have the form

np‘,
M? .—-_—p’”

2 . .
21') sin? (Phl j-hej

. (33.14)

A similar formula may be used to calculate the position of
the point by the directions n of the chords wlth approximate

equality of Dij'

If the point is calculated at the intersection of equally
precise chord directions, located uniformly around the point and
having an approximately ldentical length, then

nfidp

m%.

(n——c)sm?——- (33.15)

M3 e

M"

¢ 1
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Error in Intersection of the Direction with the Plane
If the error in the vertex of the elementary figure 1is
represented by Expression (30.13) when n' directions and n"
planes are measured to estimate the accuracy of the flgure, we
may use the approximate formula
n_" 1 n'; ’
2 Dt
. L 1 an mt
TN B i - . (33.16)
ZZ‘;’%E- /1(4.:’.’1;]?81221& N !L‘ ;?;% ’ %1 ”Slmit
LAl g d PR L D
With equally precise measurements
mg. (2;;'mb+nm ymim3, (33.17)
2 +2m§mf)-2 sin? P+ 4mg 3, sinz g —E mf)z sin2 :
For all forms of linear-angular intersection
2
L n" gt -n'm?
MP=lliog 2 T (33.18)
2n CHoape .
D costqy,
1
When calculating the position of the point by the polar
method, we have
} mng m3
j" 2= e + LA (33‘19)

Finally, for three-dimensional linear intersection in space,
we willl have
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n-2

2 sin? rp” +>
m~ -1 m m"‘
ngl - m2 =
-+ &

2 g
ZSillQ({‘lg N\ -‘l““ll-u;

m2 -m? . m2
a1 (S

1"42 —

2 sin?2 P12

4

and with equally precise measurements

1

L3

ms.

c%_z
(n—2) ('H" Z sin® "i‘n;)‘{-sin? F12
2 '
M C

2

(n—2) sin? ey sin2 ¢y,

Sl

Error in the Vertex of Intersection of the Planes

(33.20)

(33.21)

Because of the complexity of the joint geometric relation-

ships of the intersecting planes at n > 3, we can recommend that

analysis of accuracy of multiple intersection of planes or

multiple linear intersection be carried out by using the
sion for the error in the arithmetic mean of the results
several elementary figures, i.e.,

n/3 . ' d
Z . y ;
3
g & m?
LT —
i sinﬁp'q)‘

expres-
of

(33.22)

34. A Priori Estimation of the Accuracy of Coordinate

Transfer in a Space Triangulation Series

Let us call a set of points, related by synchronous observa-
tions of AES positions such that we can sequentially calculate
the positions of the entire set of points — using a minimum of
one or two points at the beginning of the serieé as the starting

points — a space triangulation series;

237

~N
'_.I
\J1
[0 0]



The error in the position of the point of a space triangulation
series may be represented 1in the form of two terms, the first of
which contains the effect of measurement errors, to calculate the
given point, and the second term of which contains the effect of
errors in the position of polnts, which are the starting points
for calculating this point. The error 1n the position of the nEQ
point of the series may then be calculated by the ‘?gcursion

relation :
M}=Mj-+ K® (M3 -+ M),
! (34.1)

where My is the error in the position of the point, caused by
observation errors in the given figure, and K 1s the coefficlent

of the effect of errors in the position of points 1, 2, ..., (n - 1)
which are the starting points for calculation of the given point.

The nature of accumulation of the effect of measurement
errors on the error in the position of the point of the series
depends on the sequence of calculating the points.

Space triangulation series for three groups may be calculated
as a function of this.

We 1nclude in the first group a series of sequentlal flgures
when the starting point for each new point of the series 1s the
one preceding (Figure 51).

The error in the position of the JEE point of this series is /159
calculated by the formula

o ; .
M3 == M2 2: Kgeu-n, . . :
: 01'=-1. ‘ | (3)4.2)
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We relate the series of sequen-
tial elementary figures to the second

.group, when each new point 1s calcu-

lated from the two preceding points
(Figure 52).

The error in the position of the

JEE point of the glven series may be
calculated by the formula

. i '
7o XY 2 "’1)
Mf:]uoj:’):i 0K 97, (34.3)

where the coefficients aJ are selected

from the table, similar to Pasqual's
triangle:

102 4 41
/

1247 51
N -

1924 811 6 1

Here each €lement is equal to the sum of two elements: one

of them 1s located above the calculated element, and the second
is located to the left between them. For example, in the last
row, 11 = 4 + 7.

Finally, we relate a series of sequential pairs of elemen-

tary figures in which the initial points for each new pair of

points 1s the preceding pair of points (Figure 53) to the third
group.
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The error in the position of points of this serlies may be
calculated by the formula S

J ’ .+
M3==DM3 X K2U-D, ) L
A CEk

similar to Formula (34.2), if J is not the number of the point
but the number of the pair of points.

35. Errors in the Position of Points in Continuous

Space Triangulation Networks

The formulas for a priori estimation of accuracy, obtained’

.
-t
(0,
o

above, are valid for individual 1solated space triangulation fig- ~

ures. Moreover, an a priori estimation of the accuracy of con-
tinuous space triangulation networks is of interest, because in
many existing designs, both foreign and Soviet [18], the develop-
ment of space triangulation is in the form of a continuous net-
work, distributed over the entire surface of the globe or a con-
siderable part of it. It 1s clear that estimates of the errors
for individual figures may not be simply generalized to systems
of such filgures of considerable length.

As we know, the accuracy of the elements of equafed_geodetic
networks is established with the aid of weight coefficilents,
i.e., by the elements of the inversion matrix of a'system of
normal equations. Moreover, it is unnecessary to caiculafe the
weight coefficients with the total accuracy possible for pur-
poses of a priori estimation of accuracy. In many cases, it 1s
sufficient to obtain the numerical characteristics with an accur-
acy of 20 — 30%* in order to calculate the characteristics of
error distribution in the networks.

¥This is equivalent to the requirement that the error in
the analysis does not exceed 1/5 c¢r 1/3 of the total error.
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Appfoximate values of the elements of the inversion matrix
may be obtailned by a method known in the literature as the per-
turbation method. It is as follows. ’

It is simpler to invert diagonal matrices. Let us give the
matrix of coefficients of normal equations in the form of the
sum of two matrices

B=P+¢C, (35.1)

where P is a diagonal matrix, comprised of the quadratic coef-
flclents of normal equations; and € is some factor, different
from zero and subject to the condition € = 1.

Thus, for matrices P and C, we will have

by 0 ...0
o w0
00 ... bed (35.2)
0 by, ...0b,
N N,
b by <. 0

Let us now expand the précise inversion matrix B~ ! into a
power seriles of

B1e Q= Qo201 £20, + €05+ - - (35.3)
where
0 0o
Qy =+ P 1= 9 O : (35.4)
"_ého %i

2u1
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If we multiply the matrices, calculated by Expressions
(35.1) and (35.3), and take the fact into account that B !B = E,
we willl have

(Qo+ Qs 820, - 605+ - . ) (P46C) = BB = L. (35.5)

Performing the multiplication, we obtain

QoP+6QiP+82QoP . . . +6QuC +82Q,C + . . .= . (35.6)

Matrix Q is a matrix, lnverse to P; therefore, Q¢P = E, and
Expression (35.6) assumes the form

eQ,P+-e2Q,P - e*Q,P . . -+ eQyC +
+62Q:C -+ e%Q,C+ . . .= (35.7)

or
e (QuP+QC) +& (P - QuC) +8 (QsP + QL) +. . .=~ 0. (35.8)
By definition € # 0, and the expressions in the parentheses

are consequently equal to zero. Thus we obtain the system of
equations

-le=‘”QoC,
o P = +Q,C,
gp:_g_c (35.9)

Let us multiply the matrix equations (35.9) from the right

by Qo,\then, taking the fact into account that PQy = E, we will
have
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Ql:: - rooov
02 == —OICQO!
(732—()-20001 (35-10)

i.e., the terms of Series (35.3) are described by the following
recursion formula:
Qua= —Q:iC0y. (35.11)
Assuming for further calculations that € = 1, we obtain the /162

following group of formulas for calculating the elements of the
inversion matrix:

B=D+C,
B1:=0,
P1=0Q, (35.12)

()1 = = rooo cen Oi+1 = _QICQO’
Q=00+ Qs O .

Let us now turn to a calculation of the approximate wvalues
of the weight coefficients by Formulas (35.12).

Matrix Qo is inverse to diagonal matrix P

=0 ...0 | _
- ¢ 0 ...0

pimQe=|" Ta 0 |0 @0} (35.13)
0 O . ‘-51—_ ..0 0 PRI q?d,

P -~ Okk |
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Let us find matrix Qi

q11 O
0y — QOCQO o 0 ¢
~gfy 0 0
s 0 g% 0 _

O O_...qzk

.. O - 0 b12 .., . b”‘,
. O b21 O .. b.zk‘

Similarly, we obtain matrix Q.

0 ‘g1z
21 0
'q;‘ i (/;tz

gy 0 ...0
0 g3 ...0

0 0 ...q?‘l‘..

--([?zk bkl bk2 "'bkk
0 qiz ... qik -
gt 0 ... g
Gkt Gha ... 0
-..qik O ‘,b12 « e blk—
P | P

.O bkl bk"z.'-o -—

Y11 G2 - .. Qik
gat (22 <. . Qon

et Qr2 - .. qhk7

Matrix Qs comprises the following approximation

T4 qis

N (1'5.1 (j:”:z
Qs — 0,00, - —

it o

91 0 ... 0
0 g% ..:0

ete.
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. (11h “0 bl:’ - ey Ll' -
" h
« op bn 0 .o b.z,x‘

o lfhp L bﬁ:] ])/.‘2 ce . ()
— ey ¥ x: ter
g1t Gz ... Gy
21 Ge2 oo gy

.........
DR

X

(35.14)

(35.15)

™~
I,_l
N
(U8

|

(35.16)



Having carried out the operation

///A///s of multiplication of the matrices
. F;\ >P’/ > according to (35.14) — (35.16), we
Py//)Q\\\;:>ﬁ/ obtain the diagonal elements of matrices
I P Qos Qi1 Q2, and Q3, expressed by the
P \f>ﬁ7/A S coefficients of normal equations
Pg\l’ a?,-.:—.-_i_._
A
Figure 54. ’ i =0,

1 (35.17)

Qn“<b ; ,Jb”b”

o, S bijb
([ii = ? N ____]_JE_.
ti ” i

The arbitrary diagonal element of the precise inversion
matrix Q is expressed by the sum

Gu=qi+qi+qhi+... (35.18)

The problem of the feasible number of approximations for
Series (35.18) was closely related to the problem of localizing
the measurement errors in continuousvgeodetic networks.

A continuous geodetic network, formed by three-dimensional
lines, is depicted in Figure 5U4. The central point of this net-
work 1s Po. Measurement errors, made at adjacent points, will
affect the positlon of point Pg. It is natural that the first
series of points (P':, P'2, ..., P'g) will have the strongest
effect, and the second sepies (P"1, P"2, cuvy P"k) has a less

noticeable effect. Further, this effect will be more and more
weakened. From the theoretical point of view, all points of the
network, no matter how far it extends, will affect the position
of point Po. However, beginning at some series of points, this
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effect will barely increase. We manage to obtain numerical esti-
mates of the effect of remote points. The error in the position
of a given point of the network is represented in the form

i

— : 5.19
My=p V—‘.Z\?}“]yi'!'qﬁ::”rl/'f:_ ’ 3 !

Variation of the value /l7pi as a function of the number of /164

approximations is shown below.

Number of -
approximations 1 2 3 L > 6 T 8 .
Vl;pi 0.71 0.76 0.81 0.84 0.87 o0.89 0.91 0.92 ... 1.00

Moreover, we established that the approximation number essen-
tially corresponds to the number of the subsequent series of points
whose effect is taken into accounft in the given approximation.
Thus, matrix elements depend only on the quadratic coefficients
of the normal equations, i.e., they are calculated on the basis
of the information which is obtained at a given point. The ele-
ments of matrix Q, are calculated by the non-quadratic coeffici-

41}

ents of normal equations of type b,.,, which pertain only to a
yp ij?

single normal equation. In other words, the effect of the first
series of surrounding points is calculated with the aid of these

coefficients. Products of non-quadratic coefficients bij’ ey

bjp’ appear 1in the diagonal elements of matrix Q3, i.e., the
effect of the second series of points is taken into account in
this approximation. Thus, the effect of more and more distant

points of the network is taken into account with each new approxi-
mation.

If from a number of approximations we select a region where
the error due to the effect of measurement errors, made in
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succeeding series of surrounding points, is less than 1/5 of the
total error in the reduced dependence /l7pi, it turns out that

the effect of the fourth series of points may be disregarded.
Thus, the entire section of the network, over whose length there
is essentially complete attenuatioﬁ of the effect of measurement
errors on the position of the given point, comprises three to
four series of points on each side.¥ Hence, we may conclude that
it is sufficient to limit ourselves to three terms in Seriles
(35.18). Then

w1+ Bl ) (35-20

Formula (35.20) expresses the approximate elements of the
inversion matrix by'the coefficients of normal equations. In
turn, the coefficients of normal equations will depend on the
shape of the network and on the form of geodetic information
which is used to construct the given network.

Let the topocentric coordinates 61 and Yy and distances to

the AES Py be measured in the network.

For the calculation, we assume that in the expression for
the error of the vector connecting the ground point to the AES
position,

M § == (m3 - m3 cos? §) p2 |- IPH (35.21)

all three components are equal to each other, i.e.,

m%:::m%cos'lﬁzz%}., (35.22)

¥Tt 1s appropriate to recall that the same result was
obtained by K. L. Provorov with the aid of other means for two-
dimensional networks.
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Then, assuming that the mean square error of unit weight
u o= mg, we obtain the followlng expressions for the weights:

(35.23)

: . 1
po=1; pf:coszﬁ; Pe== 5

Under these conditions, the matrix of coefficients of normal

equations B has the form

Y, 6, p
By 5, o=
_| o [ég] 0 0 ‘;-ff ...... 0 -_5%~ 0 |  (35.24)
R L ST

The structure of Matrix (35.24) leads to the conclusion that,
if the spherical coordinates of the AES y, 6, and p in the space
geodetic network are measured with weights which are subject to
the relations (35.23), the system of normal equations separates
into three independent parts: corrections of the x-coordlnates
are calculated from the solution of the first, those of the y-
coordinates — by the secqnd, and finally, those of the z-
coordinates — from solution of the third.

The expressions for elements of matrix B of (35.24)

Ys 8, p
may be simplified if the distances between the points of the net-
work and the AES positions are assumed to be identical, i.e.,

if 1t 1is assumed that p; = p = Py = p. Let us multiply matrix

B by the scalar quantity p?, and as a result we obtain

Y, 6, p
matrix B of very simple form
| Y, 6, p
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By, 8,p=p2By, 8,5 =
-N, O 0 —1 0 0 —~1............—1 0 0 -

0 Ny 0 0 —~10 0 —f......... 0 —1 0 (35.25)
=0 0 N 0 0 -1 0 0 —1......0 0 —1

-1 0 0 N 0 0 —-1 0 0 —1...—1t 0 O

The diagonal elements of Matrix (35.25) are equal to the
number of directions, convergent at a given point (the AES posi-
tion). Each row of the matrix will contain as many ones as A;QQ
there are connections with the AES positions surrounding it at a
given point. The remaining elements are equal to zero.

) If a space geodetic network is constructed only from measured
angles y and 6, the matrix of normal equations will be

By, 5=y, 6=
\,—};—lf‘ ——:}:‘,m,-li -—-E ngl; -—-17'-1? mgl; ngl;
_ —'\: m;l; 1\’[—}:’”‘? -—z‘, ming mglp —A-emd o omy L (35.26)
== t ]

N O SO0
—}_.nil,' —-—2_,111,-71,- Nl"‘z_”{' nly miny  —14n? .

where Zi’ my s and n, are the direction cosines of the directions

to the AES; and Ni is the number of directions convergent at a

given point or at the satellite.

For a network with measured distances to the AES, the matrix
of normal equations has the form

E l% ——‘Z m,—l,- ——z n,-l"- lf nl[l[ nll, e
. ——}", ml; St —',T'm‘-n,. ml, m¢ mymy ...
L::B IR ~ o - . (35'27)

¢ \ : O o N 2 2
oo =3l =¥ mpy i ondy omny ng
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By having specific expressions of the matrix elements of
normal equations, which occur 1n space networks with different
measurements, it is easy to obtain formulas for an approximate
calculation of the weight coefficients according to the general
expression (35.20).

Let the spherical coordinates y and § and distances p, whose
errors are assumed to be equal for simplicity, be measured 1ln the
network. For this case, Formula (35.20) assumes the form

N,
—q. = e2 |, v _ 1
9u~qx,~qy!.=qzi=—‘,{7<1+zm7>, (35.28)
. b i=1

where Ni is the number of directions measured at a given point,
and NJ is the number of directions at adjacent points, connected

to point 1. If we use the average number of directions in the
network_(Ni =_NJ), we will have

qu=1r(144). (35.29)

For the error in the position of the point, we obtain

M =0V g, 0= o ) 2 (141 ). (35.30)

Let us now consider a network in which only angular values
were measured — spherical coordinates y and §. Substitution of
the specific values of the coefficients of normal equations into

Formula (35.20) after slight simplifications leads to the
expressions ‘

250



.-_~.__.____Q?f_~__l_ N;— 3‘ I} .
T Nj—3 13 [1 TS (W= qu)J,

e | Ni— 2 m .31
4y, N-—-ym~ {1 (N 2) )(Nl 2)42)] (35.31)

— p? i“}.z n
s | s s

in which IZg? is the mean value of the sum of squares of the direc-
tion cosines of the measured directlions with respect to some
coordinate axis. The error in the position of the point in such
a network will be

M= _d R )( .’L‘_ZQE_*_)
! ”91/(1\’:——2112‘-’+A'z—2)"1?4‘J\’z“}.ff"?, TEena) (35-32)

In a network constructed from the measured distances to the
AES, the formulas for the approximate values of the welght coef-
ficients have the form

= liy 2 2B,

RS T 2u2ae
I PR ] 5.
q!/[ 2: m'? [ ZJ 2‘- q-‘ ’ (3 33)
e p2 1.1 23 02— 3 n ]
% 2 [ k o }_,rr )

Finally, for a combined network, in which some of the sides
are measured in addition to the spherical coordinates y and §,
we will have
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e 0 1 .
q!/i - A=t 1 B \'\—t ‘\'__t ) /168
\Y N (\’—_}_" m;—‘)(\rl__z qz)
1 \ 1 J 1
_ Ned .
Nzw.\,:.ng . (35.34)
(‘2 1 1
q" = Nt ] T Nt 7 NTTy N '
N;— E 13 (N‘- - nf) (Nj — }_} qz)
1 — 1 / 1

where t is the number of sides of a network measured at a given
point.

Formulas (35.34) are a generalization of Expressions (35.28)
and (35.31), since at t = N (when the distances are measured for
all directions), they will transform to Formulas (35.28), and at
t =0 (i.e., only angular values were measured at the point), they
will transform to Formulas (35.31).
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CHAPTER 7
DATA ON DESIGN OF SPACE TRIANGULATION

36. Fundamentals of Space Triangulation Design

Design of geodetic networks is included in a determination
of the location of points on the Earth's surface provided that
the specific general requirements, valid for any constructions,
are followed. Their main requirements are:

— the density of the points should correspond to the purpose
of the network and to the purposes of 1ts future use;

— the mutual distribution of points (the shape of the net-
work) should provide for calculation of the elements of the net-
work with the required accuracy;

— construction of the network should be carried out with
minimum labor and material expenditures.

Geodetic networks, constructed with the aid of AES observa-
tions — space triangulation networks — have a number of charac-
teristics. Continuous space triangulation networks should be
considered primarily as a set of ground points and fixed instan-
taneous positions of an AES in orbit (i.e., the points of space
observed from several ground points simultaneously). The number
of measured values belonging to the ground points will usually
differ from the number of measured values, comprising a certain
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synchronous group, i.e., belonging to a given AES pbsition. The
number of the latter will usually be limited by the number of
ground points from which the given position of the satellite may
be physically -observed. The number of such measuremehts; con-
vergent at some ground point, is theoretically unlimited.

Figuratively speaking, a space tfiangulation netWork'may be
regarded as a two—stor& structure. Construétion of the "second
story" begins first -— the AES positions in circumterrestrial&
space are calculated. Each point of this story 1s relatively
weak due to the small number of measurements. However, a Sét of
such points makes it possible to obtain thé coordinates of ground
points (i.e., the points of the first "story") with comparatively
high\accuracy. Hence, 1t 1s clear that space triangulation design
may not be reduced to selecting the location of ground points /170
alone. It 1is just as important to ﬁrovide optimum distribution
of the ground points and observed AES positions with respect to
each other. This means that space triangulation design includes
selecting the orbital parameters of the AES and the designation
of the ephemerides for observations.

‘Another characteristic of space triangulation is the absence
of direct observations between ground points. The connections
between them are accomplished by the satéllite positions. More-
over, due to the considerable separation bgtween ground points,
the observation conditions at them may differ sharply. 4It may
happen that the optimum accuracy of'a space triangulation figﬁre
cannot be realized due to disturbances in the cdnditibns of AES
visibility. The concept of "visibility between points" in space
triangulation is considerably more complex than in ordinary
geodetic networks. Actually, at all points from which a given

satellite ié being observed, the following conditions should
be adhered to: |
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~ — the elevation of the satellite above the horizon may not
be below a specific limit;#®

— there is line-of-sight (geometfic) visibility between the
observation point and the AES;

— the mutual location of the Sun and Earth, the satellite
and the observation point make it possible to photograph the
satellite on the background of stars.

Thus, space triangulation must include calculations of the.
optimum observation conditions and their comparison with real
observation conditions at the points.

The effect of errors in such a network and in its individual
figures provides the scientific basis for compiling space trian-
gulation designs.

The nature of the distribution and the effects of errors
determine the most general requirements which should be fulfilled
in construction of space triangulation networks and figures.

This 1s related to the measurements and their accuracy, the geo-
metric characteristics oflthe network, and the distribution and
accuracy of starting points.

Specific design will always be related to the selection of
the optimum variant of the network structure under certain limit-
ing conditions. These may be: physical and geographic conditions,
the given value of some elements of the network, the necessity
of using AES already launched, etc.

#This limit is determined by the possibility of calculating
refraction errors.
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The requirements on the optimum conditions of network struc-
ture may be defined by obtaining the required accuracy or by
obtaining some accuracy within a given observation period. T

The problem of space triangulation design may be solved within
broad or narrow limits.

The more common case is creation of a design on the basis /171
of the purpose of the overall goal. In this case, the optimum
data from the point of view of accuracy within the established
period of observations should be determined: mutual distribution
and separation of observation points, the number of AES and their
parameters (mainly, altitude, declination, and launch time), and

AES observation zones from each of the points.

When the position of the points is given, the optimum orbital
parameters of the AES and the observation zones are calculated.
On the other hand, if the orbital parameters of the AES are given,
the optimum distances between points, their location, and then the
observation zones are selected.

In the latter case, when both the position of the points and
the orbit of the AES are given, the procedure reduces to estab-
lishing the boundaries of the optimum zones and the number of
observations in these zones. As a result, the locations of the
ground stations and the desired orbital parameters of the AES
are indicated, the a priori errors of the network elements are
calculated, and the areas of the subsatellite points over which
it is desirable to observe the AES are indicated in documents
in numerical or graphic form. Finally, the AES observation con~
ditions at each point should be calculated and the approximate
long~term forecast of observations of the AES and its ephemerides,
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which are required for organization and planning of simultaneous
observations at a group of ground stations contained in thevgiven
network, should be compiled.

The first part of the data, as 1n ordinary trlangulation, is
the essential part of the procedure. The second part, similar to
the observation program at an ordinary trinagulation point, is an
independent problem of calculating the AES ephemerides for
observations.

In connection with the foregoing, the problems of space tri-
angulation design are outlined in the following sequence:

— study of the overall characteristics of error effects;

— calculation of the optimum characteristics of the networks
and AES orbits;

— compilation of the space triangulation design;

— calculation of the visibility conditions and ephemerides
of AES observations.

In this paper, the latter problem — the principles and
methods of calculating the ephemerides of AES observations for

the observation points — will not be considered.

37. General Analysis of the Formulas for A Priori Estimation

of the Accuracy of the Elements and Elementary

Figures of Space Triangulation

Combinations of individual figures are used to calculate the
position of both single polints as well as those of space triangu-
lation series and networks. Moreover, the interrelationship
between different geometric parameters and their effect on the
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accuracy of the result are simpler and more descriptive in the
elementary figures. Therefore, establishment of the optimum
geometric parameters of the elementary figures of space triangu-
lation is the main problem, which precedes the correct design of
space triangulation networks.

A superficial examination of the expressions for an a priori /172
estimation of the accuracy of the elements and elementary figures
of space triangulation makes 1t possible to make some Judgments
about the optimum values of the geometric parameters.

Thus, to construct elementary figures containing directions
measured from the observation points to the AES positions, it 1is
desirable that these directions be measured by the shortest dis-
tances. Consequently, low-orbit AES are optimum for photographic
observations; it 1s preferable that their routes pass through the
observation point. A value of the intersection angle, close to
90°, is optimum for all intersections of directions and planes,
and a value of the intersection angle equal to zero or 180° —
for linear-angular intersection.

These general requirements are perceived directly from the
given formulas.

However, most expressions for the errors in the elementary
figures are functions of several geometric parameters, and it may
not always be possible to judge the optimum value of all geometric
parameters by:the form of the formula. Thus, for example, the
expression for the error in the direction of the chord (32.2)
indicates that the error is directly proportional to the dis-
tances from the points to the AES and inversely proportional to
the sine of the angle between the planes. The requirement of
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minimum distances is contradictory to some extent to the require-
ment that the value of the angle between the planes be close to
90°. Some compromise optimum condition should be sought.

If we may assume, based on the error in the position of the
hyperboloid surface, that the requirements of the maximum length
of the celestial chord and the differences in distances, equal to
'zero, are optfmum, i.e., the symmetry of Doppler observations with
respect to the path, we may assume (based on the error in the
length of the focal radius of the hyperboloid) on the other hand,
that the maximum difference in diétances, i.e., the maximum
asymmetry with respect to the path, is optimum. Therefore, it
is difficult to make a Judgmén% about the optimum combination of
values Ap, d and 7 at first glance.

Besides the foregoing, a number of cases may be presented
when establishing the optimum pérameters, formaily corresponding
to the minimum error, is often unreal or unattainable, and is
sometimes generally meaningless wlth respect to the problem being
solved.

It is most vallid to solve a system of equations of form
d3M/dv = 0, from which we also obtain the optimum parameters, in
order to find the optimum geometric parameters Vi contained in

the formulas for an a priori estimation of the accuracy of the
figures. However, the expressions for the errors due to indepen-

dent geometric-parameters are often very cumbersome, and solution

of the systems is complex. This may be accomplished only for
individual elementary figures. Therefore, the .optimum geometric /173
parameters, cdntained:in the formulas for an a priori estimation

of the accuracy of the elements and figures of space triangulation,
are usually calculated by numerical methods.
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Calculation of the Chord Direction

The formula for the error in the chord direction (32.2)
makes it possible to arrive at several conclusions immediately.
First, the error will be minimum at equal distances from the
points to the AES positions, i.e., the AES positions should be
located symmetrically with respect to the center of the chord
in a plane perpendicular to it and passing through its middle.
Secondly, it follows from (32.2) that the intersection angle at
an AES position, equal to 180°, is optimum, i.e., observation of
an AES position, located on the chord itself, is essentially
absurd.

Actually, the combination of these conditions indicates the
feasibility of AES observations at the minimum elevations above
the horizon of the observation point.

At a given AES altitude (H) and at a given minimum permissible
value of AES elevation above the horizon of the observation point

(o ), we can find the maximum distance from the point to the

min
AES position by the formula

Pmax= V(H »:—1—1)2—‘]{2 cos® Umin— R sin Umino (37 . l)

where R 1s the mean radius of the Earth.

The most suitable shape of the figure from which we calculate
the direction of the chord will depend on the optimum chord length.
The value Dopt i1s obtained from the solution of the equation

dmy

1 2 AR (3
=y (A—8B>— 12BC —5C) DS+

+ (BAB 4 6AC — 4B2C — TBC? - 4C%) Db — (37.2)
— 3(A— 4ABC—GAC2 - C*) Di—
— (242C — ABC? — 4ACY— BCY I? = 4AC* (A— C?) = 0,
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where

pma:

e A = 41ggpﬁmx;
13 = (RZ ‘{— p?na.\);

The dependence of optimum chord
length on AES altlitude is shown

- \ \ in the graph (Figure 55) for
0 z 4 b §¢ Hthous. kma

—

= o
min - 20° (the optimum angle
Figure 35. between the planes [Aopt] essen-

tially does not vary as altitude varies and is equal to 76°).
This graph may be used to select the optimum AES altitude for /174
space triangulation with given chord lengths.

If the chord length is less than its optimum value for a
given AES altitude, the most suitable shape of the Kiguré
will be determined by the distances from the points to the AES
positions symmetrically located. 1In this case, the expression
for the error in the chord direction may be represented as a
function of the distances to the AES. The optimum value of the
distance to the AES Py is calculated from the solution of the
equation

pt

dm
a,OB — 405 — (34 — 4C) p* -+

L (4AB + 5AC — 32BC — (37.3)
— 20C2) - (A28 — 12ABC
L AC? 1203 0 — AC (AB -
+ €3 =0,

where | A A= D2,
p—r—(2),

C=2RH L1 25
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A The dependence of the optimum

gi’ values of the dilstances to the AES
and of the values of angles A and

wr o on the chord length for several

i 1- values of AES altitude 1s presented

in the graph (Figure 56). )

Thus, the value of the geo-
metric parameters of the optimum

figure for calculating chord direc-

Aeotr

el _"“ﬂ;///ﬁgﬁ”///’ tion (Figure‘57), the main one of

B F  pepeR ;:EEEEE;EZZZ which is the ratio of AES altitude
kaﬁg;Zééﬁﬁ : to chord length, is calculated by

°r o the graph (see Figure 55).

1 | 18
1 2 J ¢ thous. km

/Jgpkam
ﬂ_ﬁﬂf_wf”)//// At a given chord length and /175
H=

3o+ 7‘—‘/’//,/’// AES altitude, the optimum para-
H:U‘, R

2l meters, which determine the shape

Jﬂﬁﬁ : of the figure (the value of angle
- H;N‘p C
Vi ,,fﬁ ] -Aopt or of popt)’ are found from

1 ! 1
2 3 4 Ithous. km the graph (see Figure 56).

Figure 56. Similar graphs may be used
. Q in space triangulation from chord
\\\\ directions to select chord lengths,
NG 7% AES altitude or, if these data are
BERRLITN - established, to select the shapes
‘ ’ of the figures for calculation of
Figure 57. chord direction.
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Three-Dimensional Angular Intersection

¢ When calculating the position of the point from the direc-
tions observed from it to two known AES positions, Expression
(32.3) should be used to establish the optimum parameters of
the elementary figure. The distance p may be expressed by length
d of the celestial chord, connecting the AES positions

2 _. 9% (37.4)
0% = 2(l—cosq) °

Having substituted (37.4) into (32.3) and having set the
derivative of the expression obtained from ¥ equal to zero, we
obtain the cubic equation

gﬂ: 3 ~ 5 2p— - 5= - |
g~ = ¢05° 90,5 c0s? 9— 6,5 cos ¢ — 2,5 =0. (37.5)

From the solution of Equation (37.5), we find three roots
(+13.382; - 13.500 and ~0.382). The root at which mopt = 112.5°

corresponds to the problem. This value of the angle also deter-
mines the optimum shape of three-dimensional angular intersection
with provision of the minimum p for the given AES altitude.

When calculating the position of the point from the inter-
section of the chord directions, by a similar discussion we
obtain the most suitable value of the angle between the chord
directions at a specific point.

However, with respect to the optimum shape of the inter-
section of chord directions, additional requirements enter in.
These requirements are maximum advance of the figure in calcu-~
lating the position of a single point and constant advance in
series and in continuous space triangulation networks from the
chord directions.
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The optimum shape of the figure to calculate the position
of a single point should provide a minimum error in the position
of the point with maximum advance of the figure, i.e., with maxi-
mum separation of the calculated point from the starting points.
Having denoted the advance by A, we obtain the expression of this
condition in the form

%i
i min.

The shape of the figure may be characterized by the relative
advance (A/b), i.e., by the ratlio of the absolute advance to the
distance between the starting points — the base (b).

Let us consider the problem of the optimum shape of the
figure for calculating the position of a single point with
respect to the two main types of figures considered in Section 18,
i.e., when the point is calculated at the intersection of chord /176
directions or by sequential three-dimensional angular intersec-
tions. In this case, we will proceed from the fact that separa-
tion of the calculated point from each of the starting points

corresponds to the optimum chord length at a given AES altitude.

Expressions for the error in the position of the point in
these types of figures, represented by Formulas (32.5) and (32.4),
respectively, indicate that there should be an increase in the
angle of inpersection at the calculated point (@j) in order to
provide a minimum value of the error.

Variation of the relative advance has a different effect on
changing the angle of intersection in the figures (Figure 58).
With an increase of the relative advance, the angle of intersec-
tion of the chord directions decreases, whereas the zone of
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Figure 58.

simultaneous visibility of the AES from three points, and, con-
sequently, the possibility of increasing the angle of intersection
of the directions from the AES to the calculated point increases.

The nature of the variation in the accuracy of calculating
the position of the point with a variation of the relative advance
for these two types of figures may be judged by the graph (Figure
59), constructed for the case H = 0.25R, % in 20°, and mg = ir,

~N
'_l
ﬂ
-

The followlng may be established from the graph:

— for intersection of the chord directions, the error is
minimum at A/b = 0.33, which corresponds to the angle of inter-
section @ = 112°27', but such advance of the figure i1s unsuitable;
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—- for sequential three-dimensional angular intersections
in space, the error is minimum at A/b = 2.36, which corresponds
to the equality of the length of the base b and of the celestial
chord d

Qogt = boge =20 Y/ UCLTFUIE= B=5i—
opt ™ Topt ¥ GRETDy R A A

(37.6)

where
A‘= (R4-H)* - R~ p2,
B=2(R+H)R.

As can be seen from the graph (see Figure 59), the optimum figure
for both types of construction is one with a relative advance

A/b » 2.0 — 2.5, and the increase of relative advance above the
value of 2.5 essentially does not lead to an increase of absolute
advance (Figure 60).

As a result of the analysis, we may conclude that the
position of single points with the aid of synchronous photographic
observations with a relative advance less than A/bopt = 2.5
should be calculated by using the three-dimensional intersection
of chord directions, but in the case of a large relative advance,
the sequential three-dimensional angular intersections of direc-
tions to the AES should be used.
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Linear-Angular Intersection

The.formulas for the errors in the position of the point (or
in the position of the AES) at linear-angular intersections
(32.12), (32.16), and (32.17) indicate that the point is calcu~-
lated more precisely if the angle ¢ between the lines, along
which the directions and distance are measured is equal to zero,
i.e., from the polar intersection. The advantage of such an
elementary figure, when combining photographic observations and
measured distances, as can be seen from Formula (32.11), is the
fact that the accuracy of calculating the position of the point
does not depend on the shape of the figure. The error will be
proportional to the distance to the AES and, therefore, willl be
minimal when observing the AES on the path of the point.

~
'.—I
-3
[0 0]

However, in the construction of space triangulation series
and networks, this requirement may contradict that for maximum
advance of the figure and a minimum relative error in calculating
the position of the point.

Here the optimum figure will be that containing two sequential
linear-angular intersections, provided that observations of the
AES position are at a maximum distance from the calculated and
starting points in a plane passing through them and the center
of the Earth (Figure 61).

The absolute advance of such a figure will be calculated by
the expression

2RPmax €08 Omin

D max — RTH

(37.7)

Its variation with AES altitude 1s shown in Figure 62.
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When calculating the AES position from a combination of
photographic observations and measurements of the differences in
distances, the accuracy of intersection depends on its shape,
which determines the relationship between the difference in dis-
tances and the focal radlus of the corresponding hyperboloid.

It is obvious from Expressions (32.16) and (32.17) that they
contain the term d212/Ap*, which induces contradictory require-
ments, on the one hand, for the maximum difference in distances
(ap) and,'on the other hand, for minimum values of the celestial
chord (d) and separation of the point from a plane passing through
the center of the chord (7). Investigation of the dependence of
these values on the shape of the figure indicates that the opti-
mum condition, satisfying the requirement di/Ap? = min, will be
fulfillment of observations on a trajectory passing through the
zenith of a point, where one AES position should be observed at

the zenith, and a second should be observed at the edge of the
visibility zone.
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Calculation of the Position of a Single Point by the

|

Direction and the Difference in Distances

If the point is calculated from an elementary figure con-
taining the direction and the difference in distances from the
point to the known positions of the AES, it is obvious from
Formulas (32.18) and (32.19) that the optimum figure is one
in ‘which the AES positions are observed on a trajectory passing
through the zenith of the point, at the boundary of the zone of
visibility. 1In this case, the length of the celestial chord is
maximum, and its center is located at the zenith, i.e., at the
minimum distance from the point. The difference in distances
is then equal to zero. Thus, we may assume that the advance of
this figure is essentially equal to zero. When the conditions
deviate from optimum, the accuracy of calculating the position
of the point to provide a substantial advance decreases sharply.

Based on the foregoing, the use of an elementary figure
where the difference in distances is calculated to two known
AES positions, and the direction is calculated to a third posi-
tion [see Formula (32.18)], should be considered unfeasible.

Calculation of the Position of the Point from the

Direction and Chord Length

We may conclude from analysis of the formula for estimating
the accuracy of the elementary figure for calculating the posi-
tion of the point — from the direction of the chord and its
length, obtained from the measured distance from the point to
the AES (32.13) — that the error in the position of the point
is minimal at a minimum value of the ratio between the unmeasured
distances to the AES and the measured distances.
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The optimum observation conditions may be achieved 1if the
AES position, to which the distance is measured, i1s located in
a plane passing through the chord and the center of the Earth,
and the measured distance is maximum for a given AES altitude
at a given minimum angle of AES elevation above the level of the
observation.point. Under these conditions, the error in the
chord length, which determines the accuracy of the position of
the point, will be

3 2 s
my  DPAeh PR
7Ilg.

g~ 902 n? g
D .2pl,‘maxsm ©p | (37.8)

By varying the values of mD/D by this formula, we can obtain

the optimum chord length D and the corresponding values of

opt

ka andg@k, which are 1its functions, for each combination of -

given H and o.

Thus, for o = 20°, a graph of the dependence of D on H,

opt
i.e., a graph of the optimuﬁ values of the ratio of chofd,length
to AES altitude, is presented in Figure 63. Incidentally, it is
obvious from consideration of the graph that the optimum chord
length in the given figure 1s close to the optimum‘chord length
in the figure for calculation of chord direction.

In the case when chord length 1s less than optimum\fof a
given AES altitude, the suitable shape of the figure may be
characterized by the optimum value of the angle of elevation
of the AES, to which the distance of the observation point above
the horizon is measured.
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values (D) at a given AES altitude
may be constructed similarly to
the graph presented in Figure 56 and used for projection of the
observations.

Figure 63.

The figure for calculating the position of the point from
the direction and length of the chord, when combining synchron-
ous photographic observations and measurements of the difference
In distances to the AES positions, is another matter.

The shape of the:figure may be characterized by several
parameters of the schematic projection of the figure on the
Earth's surface (Figure 64): N

— by the angle between the chord directions and the AES
path (k);

— by the length of the celestial chord (d);

— by separation of the projection of the celestial chord
center from the center of the ground chord along (A) and perpen-
dicular to (p) its direction. The best method for calculating
the optimum parameters of the elementary figure to provide the
condition mD/D = min would be, for example, at a given AES

altitude, solution of a system of equations
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mp, mp (37.9)
o(5) o2 |
2 L =0
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However, obtalning a system of such equations and solutions of
it are very complicated.

It follows from an analysis of the formula for the error in
chord length (32.15) that one of the requirements for the optimum
shape of the figure is to provide a maximum value of the differ-
ence in distances to the AES. When the distances to the AES are
equal, the error in the chord length is equal to infinity, i.e.,
the chord length, and consequently, the position of the point as
well are not calculated. Combination of this requirement with
that for maximum advance of the figure permits us to assume that
the shape of the figure will be optimum 1f the condition is ful-
filled that the distance from each of the points to at least one
AES position is maximum (37.1).

S
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Let us consider such a figure with different values of the
angle k between the chord directlion and the AES path.

Diagrams of the figures consldered, as well as their compara-
tive data for H = 0.2R and ®in - 20° are presented in Table 2.

Analysis of the figures presented in Table 2 leads to the
following conclusions.

The first figure, which 1s optimum for calculating the chord

direction, makes 1t impossible to calculate the position of the
point, because Ap = 0 and the chord length may not be obtained.
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TABLE 2

No. of Item Diagram Parameters Error
P17 Piy ™ Pj17=Pjg ™ Pmax
ﬁp,-——-_\p,::O 1‘11]’__ "
1 D= 3700 D7
v ==90°
EP!:O, n=0.
: X, Pig == Djg == Pmax
: = 240 —— . -
2 e %) l-)A:'g{f)':eO D 82000
B0 e S
g=0, n=73.
Pig == Pj; = 0jp == Pmax
Ao;=0
D=2500 M1
3 i v = (3¢ D 30000
|P‘=d cos #, n= sinix.
k\‘ Piy = P37 Pmax -
2 Ap;=Ap;
N\ D600 My 1
. AVAN oy #=239° D = 30000
A . ;E:—-O’ n=0.
Piy = Pjg= Omax
ikl ) Ap;=p; = Aomax M;
5 TTAESRISEAy =2300 . =
K e _
,[_RE:.O, 74',:::0.
' M- 1
% - 93733 e T e reeene
6 D =250 D o 7000

7=0,
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The most suitable value and shape of the second figure are
calculated by the optimum chord length, because the length of
the celestial chord 4 = f(D).

The third figure is less suitable than the second, because
the difference in distances in this figure to the AES positions
is equal to zero and, consequently, the differences in distances
in this figure may be measured only from another point.

The most suitable dimensions and shape of this figure are
also calculated by the optimum chord length, because d = f,;(D)
and Kk = fz(D).

The most suitable value and shape of the fourth figure are
calculated by the optimum chord length and the value of angle «k,
because D = f(k).

The fifth figure, where the positions of the AES and of the
points are located in a single plane, passing through the center
of the Earth, makes it impossible to calculate the chord direc-
tion, and consequently, the position of the point. However, if
the chord direction has. been calculated previously (only from
simultaneous photographic observations of other AES positions),
this type of figure is optimum in terms of the accuracy of cal-
culating the chord length. |

In conclusion, a construction is presented which i1s a com-
bination of the first and fifth figures, in which four rather
than two AES positions are observed (the sixth figure).

A comparison of the advantages of these figures may. be made

on the basis of the graphs (Figure 65), constructed for a = 20°,
mg = 2", and mAp/H = 1:100,000.
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1060 2000 Fan It is obvious from the graphs

and Table 2 that the second fig-
ure 1s less suitable (it has a
less optimum chord length and a greater relative error in the
point) than the remaining figures, which essentially provide
identical results.

Figure 65.

Upon selection of the optimum type of figure for a specific
chord, we are forced to consider the real value of angle k between
the chord direction and the direction of the AES path, calculated
by the angle of orbital inclination of the AES to the equator and
by the mean latitude of the chord. Therefore, the range of
application of the elementary figures of the optimum shape 1is

limited.

.

With given orbital parameters of the AES, we can recommend
the following as optimum:

— the 'sixth figure at 0 < k < 15°,
— the fourth figure at 15° < k < 45°,
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— the third figure at 45° < k < 75°, and

— the second figure at 75° < k < 90°.

When the given chord length is less than optimum, the most
suitable figure is calculated by the optimum distance from the
point to the AES position (pop ).

The nature of the variation of the value Popt ? as well as

p
of other parameters, characterizing the shape of the fourth

figure d, k and A, with variation of the value D/H, 1s shown in
the graphs (Figure 66), and the variation of the absolute (Mj)

and relative (MJ/D) errors in the position of the calculated

point as D increases at H = 0.2R 1s shown in Figure 67.

The graphs indicate that where D < D he value of all

opt? t
parameters increases. It continues at D = DoptK’ and 4 and A

decrease, while Po remalns equal to pma

pt x*
The construction of such graphs for the proposed chord
lengths of the projected triangulation may be used as the basis

for selecting the optimum figures.

Figures with an Excess Number of Measurements

When deriving formulas for estimating the accuracy as a
function of the number of excess measurements, we considered the
increase in the number of measurements in the figure, which
alters its geometric shape, as the most general version.
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We considered the optimum

M/ m;
1:30000+150 - shapes and dimenslons for the
elementary figures. Moreover, it
1:20000 | 100} was established that the figures
which differ slightly from the
1l elementary figures by the number

: L . 1 1
+10000 5.0 : oo - 2000 N

! of measurements, are formed with
Figure 67.

observations of individual AES
posltions, whereas during prolonged observation sessions, the
figures from which the positions of the points are calculated
may contain a considerable number of excess measurements.

Since the sighting target 1in space triangulation is the
instantaneous position of a satellite, moving according to a
specific law, the frequency of the AES passing through the
optimum locations for its observation, which we have selected
for the elementary figures, will in most cases be considerably
less than the frequency of passing through the entire zone of
the joint visibility of the AES from the calculated and starting

points.

Consequently, in order to achieve a specific accuracy of
the results of space triangulation within a limited observation
time, the requirements on the optimum shapes of the figures may
be contradictory to the requirement for the required number of

measurements.

In order to establish the relationshlps between these
requirements, let us consider the example of estimating the
accuracy of the result of the simplest of the space triangulation
figures — figures for calculating the chord direction upon
observation of more than two AES positions from the ends of
the chord.
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Let six AES positions, equally dis-
tributed perpendicular to the chord
direction (Figure 68), be observed in the
zone of joint visibility from the points.
Moreover, two AES positions (ki and k,)
are located at optimum positions for the
elementary figure. We may assume that an

interval equal to one sixth of the zone
of visibility length corresponds to each

Figure 68. of the six AES positions.

Since the frequency of AES passages through each interval
should be assumed to be identical, as much time is required for
an equal number of observations of all six AES positlons as is
necessary for the same number of AES observations at two optimum
positions.

Using Formula (33.8), we may calculate the error in the
chord direction during observation of all AES positions (mg) and
of two optimum positions (mz2). The ratio of the values of the
errors is equal to: me:mp = 1:1.L44.

If it were necessary to carry out the same.number of obser-
vations to calculate the chord direction in the given case, the
AES positions k; and kz would be observed three times, and the
ratio of the errors would be equal to mg:m2/v3 = 1:0.83. It is
obvious that in the given case the error, obtained as a result
of AES observations at optimum positions, is less. However,
three times as much time is required to achieve it, because the
frequency of the AES passing through the intervals, corresponding
to positions k; and k, and comprising one third of the total
length of the zone of visibility, is three times less than the

~
-
oo
U1

frequency of the AES passing through the entire zone of visibility.
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The result obtained indicates that the optimum condition to
achleve the required accuracy over a limited observation time
may be observation of AES positions, uniformly distributed in the
zone of mutual visibility of the points.

The area of the mutual visibility zone may be approximately
represented by the expression

8=0,53( Vot —1E— P\ [ [V, D,
( 2 ) 3] ] pmcx ]j [ 2 l (37.10)
+2 2V bl 1
The areas of the mutual visibility zones at different AES
altitudes may be obtained in order to establlish the optimum para-
meters of the figures, considered in the example, for calculating

the chord direction at a given chord length and a known minimum
value of AES elevation above the level of the observation point.

Since the element of the area, corresponding to observation
of a single AES position, is given, we may obtain the number of
AES positions, uniformly distributed throughout the visibility
zone, for the different AES altitude values.

We may now look for the minimum value of the total error 1n
the chord direction, obtained as a result of observing all n AES
positions in the zone of visibility, as a function of AES altitude
for each chord.

For these purposes, Expression (33.7) may be simplified /186
"
Lo X m mty om oy
I?lﬁ‘_bT'ﬁNT'm_ﬁ-m, (37011)
\' sin?g - -
PR.PE,
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where the average values of pgp and (sin? m)cp may be obtained

each time for the entire zone.

Analysis of Expression (37.11) indicates that the ratio
pép/(n - 1), i.e., the ratio of the increase in the square of the

distance to the AES to the zone of mutual visibllity, basically
changes as AES altitude variles. On the basis of the variation
of this ratio, we may establish the opti-
’j’;;g"f A mum AES altitude for each chord length,
providing a minimum direction error when
2000 observing AES positions, uniformly dis-
tributed within the zone of visibility.

The graph of this dependence for Oan =

ﬁb 7000 M%mm 20° is presented in Figure 69. It is

T

T

ogo

obvious that the optimum ratio of chord

Figure 69. length D and AES altitude H differs from
that required for the elementary figure
(see Figure 55).

Thus, consideration of the variations in the requirements
for the optimum parameters of the figure for calculating the
chord directlon with excess measurements leads to a number of

important conclusions.

With a given number of observations of AES positions, which
are required to obtain the result (which may be, for example,
with limited operation of the observation equipment), observation
of AES, located at positions corresponding to the optimum shapes
of an elementary figure, will be preferable.
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Observations of the excess AES positions at locations
unsuitable for obtaining the results from an elementary figure,
in combination with AES observations at optimum positions for
the elementary figure, have a negligible effect on the decrease
in accuracy.

The optimum condition, for a given time for the observation
session when the accuracy of one observation is low and a large
number of observations 1s necessary to obtain the required accur-
acy, will be observation of all AES positions, uniformly distri-
buted in the zone of mutual visibility from the points.

In some cases, the AES observation zones must be decreased.
This may be done optimally when the condition of approximating
the observed AES positions to the most suitable cnes for the
elementary figure is followed. The dimensions of the zone of
mutual visibility, in which the positions of the observed AES
positions are uniformly distributed, may be decreased without a /187
loss of accuracy by increasing the elevation of the observed AES
above the horizon. Consequently, the visibillity zone for such

cases 1s established on the basis of the value popt’ i.e., the

optimum distance from the point to the AES, rather than on the
basis of the value of Prax’ The dependence of the variation of

p as the ratio H/S increases may also be represented graphically.

opt
Moreover, by increasing the elevation, we weaken the effect of
refraction on the accuracy of measuring the directions from the

point to the AES positions.

The conclusions obtained, as well the proposals for estab-
lishing the optimum conditlons to obtain chord direction during
the observation of an excess number of AES positions, may also
be extended to other figures, for example, differeﬁt types of

intersection.
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For figures whose excess measurements are unrelated and
whose error is calculated, for example, by Expression (32.15),
the requirement of obtaining the necessary accuracy within a
given time also entails observations of AES positions, uniformly
distributed in the zone of mutual visibility from the observation
points.

In order to calculate the optimum dimensions of the zone of
mutual visibility in the given case, 1t 1s expedient to use the
criterion of the minimum ratio between the mean error for the
zone and the area of this zone, proposed by Lambeck for calcula-
tion of chord length by laser measurements of the distances to
the AES [58].

38. Optimum Conditions for the Transfer of Coordinates

in a Space Triangulation Series

The criterion of the optimum conditions for continuation of
a space triangulation series may be the minimum relative error in
the position of the end of the series, i.e., the ratio of the
error in the position of the last point of the series (Mn) to 1its
length (L)

Mp

L

=min

(38.1)
provided that the number of points of the series is minimum.

The optimum shape for the elementary figure of a
space triangulation serles, besides the conditions: Mj/A = min

and A/b = max, should satisfy the requirement of constant advance.
Thls requirement may be satisfied by several diagrams for a
series, shown in Figures 70 — 75.
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Figure 72. f Figure T73.

The optimum shape of the figure in the first diagram is
intersection of the chord dlrections, which cross at an angle
of 60°., Its dimensions are calculated by the optimum chord
length for a given AES altitude (Figure 70).

An elementary figure with a relative advance equal to A/b =
2.2, 1s optimum for the second and third diagrams for the series
(Figures 71 and 72). In this case the errors of both figures
are similar and do not exceed the doubled error of the first
figure, and the absolute advance differs only slightly from the

maximum advance.

The optimum shape and dimensions of the figure for the Algg
fourth diagram of the series (Figure 73) are calculated by the
optimum distance between the points, which may be found from a
solution of the equatlon de/dD = 0 for a given value of AES
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[ Dgm———mm—eb

Figure T4, Figure 75.

altitude. In this case, the error in the position of the point
is calculated by the formula

) A—Btohs o
M,- = l 3[1_“_(—/1—:—1.3&5;:::‘1)2)3 :| +pr2nax} X
4(A—Byplax .
mg (38 . 2)
S = e
Phaax 2R2p%ax

where

A:(R +H)2 = RZ’

B = 2R2 (A‘*F_":znax)
2R2—D2

The shape and dimenslons of the standard elementary figure
of the fifth diagram, shown in Figure T4 in ‘the projection onto
the plane passing through the points, the AES positions and the
center of the Earth (which also contains the characteristics of
the given figure), are clearly calculated by the distance between
the points, dependent on AES altitude, as follows from the
expression '

Dz=2R2[1——cos—§—><

- (R4 HY 4 R2— ooy \7 '
x (arceos SR |  (38.3)
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Figures, formed by intersec-
1,6 tion of the chord direction with
the synchronization plane (Figure
75), are used in the last and
sixth diagram for construction of

A,thous.km

the series. The use of such fig-

@ N N o &
= T

ures may be required to achieve

1 I (] ]
2 4 6 8Hthous.km

o

an advance equal to or greater
Figure T76. than the optimum chord length.

In this case, the maximum distance between the points through
which the synchronization plane passes is calculated by Expression
(37.7).

The dependence of the advance on AES altitude for these
figures is shown in Figure 76. '

On the basis of (38.1), Expression (34.1) for the error in
the position of the ni-’--Il point of the series indicates a preference
for a series from those figures which provides aminimum coeffici-
ent of the increase in error K.

When creating a space triangulation series, the figures will
not be essentlally elementary, but will contain a considerable _
number of measurements. However, the optimum dimensions of the /191
elementary figures may be used for the comparative characteris-
tics of series constructed from these figures. This problem is
especlally timely for space triangulation series, constructed
from photographic observations, since the range of figures in
such a triangulation 1s large, and the results depend mainly on
the shape of the figures.
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M Establishing which diagrams
‘n

e _ are more suitable for a space tri-
: - ! ‘
k2000600 angulation series may be done by

- 4 considering graphs which indicate
1: 1000000 |- %iffg;;;;;;;;;i;;;; the variation of relative error in

J
2 .
\L =

5 calculating the position of the

2007 Ga0Dfo0q0 #ogo Wil Zyxw ~ Point of the series as a function

Figure 77. of the length of the series (Mn/L).

Such graphs are presented in Figure
77 for series of figures of optimum shape and value (at a = 20°,

H = 0.2R, and mg = 1") for the five diagrams shown in Figures
70 — T4, |

Space triangulation series based on the first and fourth
construction diagrams are recommended for more economical trans-
fer of coordinates. The fifth diagram may'be used in rare cases,
dictated by physical and geographical conditions.

When constructing space triangulation series from combining
observations, sequential usé of the figures for calculating the
point from the direction and length of the chord, when combined
photographic observations both with measurement of the distances
and with measurement of the differences in distances to the AES
positions, has a number of considerable advantages compared to
sequential use of figures, which calculate the AES positions,
-and then — the position of the point. The primary advantage is
the fact that such figures require only a single starting point,
which makes it possible to form networks from chords and chords
similar to polygonometric ones. The secondary advantage 1s the
possibility of calculating the position of the point from radio
engineering observations at a single point — at any end of the
chord.
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Jid In the extension of a coordinate sys-

/4
FT‘“"DAT""' tem, space triangulation series, compiled
Eﬂj&~}f Q%\)K< from figures of low value, with an optimum
dZS;Z\XC\?_ ratio of distances between the points and
f 3
I AES altitude, are preferable. This con- /192
Figure 78. cept has already been expressed by Batrakov
[31.

Thus, for example, when the errors in the common points of
two series, constructed by the first diagram with an optimum ratio
of AES altitude and advance, equal to 3,000 and 6,000 km, respec-
tively (Figure 78), and presented in Figure 79, are compared, it

is obvious that the relative error
" , in the points of the first series
pﬁ%ﬁ,ﬁ%{ _~_ 1s two times less. It is obvious
" that this same concept is also
-valid for extension of a coordin-
ate system to a specific area by
constructing a continuous space

M:
2-! =3000kn),z

80
<nm5wmm

60

T

1:200000

40 triangulation network.

# | It should be.said in conclu-

4 ; sion that figures of the first

o ¥ 7. diagram (see Figure 70) — i.e.,
equilateral triangles, constructed
from. the chords of a length which

is optimum for the given AES altitude — may be used to construct

a continuous space triangulation network, which requires retaining

the value of the elementary figures in any direction.

100000 - 0 %
' I. 1

Figure 79.
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39. Optimum Combinations of Measurements in Continuous

Space Triangulation Networks

The problems of the effect of the geometric shape of space
triangulation figures are more timely for networks in which only
the angular or only the linear values were measured.

Let us evaluate the effect of the:geometric shape of the

network in terms of the error in the position of the JEE-point

M=p Vi T, T, (39.1)

where S qy , and q, are calculated by Formulas (35.31) —
J J :

(35.34).

Certain assumptions with respect to the shape of the network 4;2;
must be introduced for further analysis. We first assume that
all directions, measured from a single point, are uniformly
distributed with respect to the coordinate axes. In this case

2Pt = Fn? = g and, consequently, taking the fact into
account that 212; Zm? - 2nt= N,, we obtain g == N/3. Formulas

(35.31) will then assume the form

-3 2
@y =arj= g, =g (1457 ) (39.2)

By comparing Expressions (39.2) and (35.31), we may conclude
that, 4if the directions to the AES in the network are distributed
uniformly with respect to the coordinate axes, the accuracy of
calculating the points in this network is reduced by approximately
Y372 compared to a network in which three elements (i.e., Y, 6,
and p) are measured.
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Figure 80.

Assuming that o)

Now let some point in the network be
calculated such that all directions,
measured from a given point, are similar
to each other. Let us introduce a coor-
dinate system such that the dilrectlons are
located close to the X-axis, and the origin
of the coordinates coincides with the cal-
culated point J (Figure 80). Let us denote
the angles, composed of directlons 1, 2,
esey 1 with the X-axis, by a;, 02, ooy aJ.
We will then have

A= 15 =sin?q,,

1—13=sin’q, : (39.3)

1—1}=sin%q,,

Ni— 3 =3 sin*q,. (39.4)

S 02 T Jee = Qi, we Obtain

Ni— 3 B=N,sina. (39.5)

For angles formed by these same directions 1, 2, ..., i,

with the Y- and Z- axes, due to the smallness of angles a,, we

may assume that m

= n, £ 0, and, consequently

Ni— St Ny ¥ 1= N, (39.6)
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Taking these assumptions into account, Formulas (35.1) may be
written in the form

03 {1+ 3N(1-—l4)}

q = WNsinza 2N¥2sin?a

But

B==(1—sin’a)?=1—2sin*a- sin‘a,

and therefore,

o1y = e (13— o). (39.7)

%Isqqzh%L(14u§% . .(39.8)

The formula for the error in position J, obtained by the
welght coefficients (39.7) and (39.8), will have the form

Mi=w Nsm~ (1 l' 4N+3 Sln’a)_. (39.9)

Let us now consider a case when at least one direction,
(for example, jk in Figure 80) comprises a "good" angle with each
of the remaining directions (i.e., close to 90°). Assuming that

ajk = 909, and sin « = 1, we obtain the following expressions

Jk
for the welght coefficients:

- o? .3 1
QV”“1+4AH-anﬁa {17*??'[1+4N—~nsnwa1N *7 ;
3(N—1)sin?a } (39.10)
+ [{-F(N=1)sin?a] N |’
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— pé ] 3 N'_i
Y9; = =1 Fsintex {1 TR W) Fsinfa] N +
3sin? o } ‘ (39.11)

+ [(N—1)-+tsin2a] N

(39.12)

We note than in Formulas (39.7) — (39.11) the terms are discarded
which contain a sine of a small angle in the fourth power in the
numerator.

Let us further assume that at least two directions (directions

Jk and jt in Figure 80) comprise "good" angles with the remaining
= ~ °

directions. This will mean that ajk ajt 90°, sin ajk ~ sin “Jt

~ 1, and then — 1if terms contalning sin* a are not retained —
the formulas for the weight coefficlents will assume the form

.- __,.: p2 ' 3
%f—2+W—mﬁwa{1+[}HN—mﬁﬂMN7+

(39.13)

' 3(N~—2)sin2a
+[LHN—mmmwN}’
ey p® f, .3 N—1
q”f%F‘W—H+MWa{1f3"uN—n+ﬁmQN'F
V. 3sin?a (39'1,4)
+ l(N—1)+sin2°=lN}~'

The values of /17pj, where the value of l/pJ 1s calculated

from the expression: 1/p, = q. + q. + q_ , are presented in
S T ST
Table 3. The weight coefficlients of q_ , 9. , and g are
30 %3
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TABLE 3

Directions are
Number of directions, forming small distributed
o angles at a given point uniformly
N =26 N-1=5 N-2=14 [
1 2 3 y - -5
15° 2.04 1.24 1.08 1.00
10° 2.90 1.26 1.10 1.00

calculated as a function of the assumed geometric conditions from
Formulas (39.7), (39.8) (the third graph), (39.10) — (39.12)

(the third graph), (39.13) — (39.14) (the fourth graph) and (39.2)
(the fifth graph).

The data of Table 3 indicate that, if even two directions
form "good" angles with the remaining directions, the loss of
accuracy 1s essentlially negligible. In continuous networks,
there are no cases when all angles, made by the directions meas-
ured from a given point, will be small, but this case (the second
graph of Table 3) leads to a great decrease in accuracy. There-
fore, if part of the directions, belonging to a given point, form
small angles among themselves, the accuracy of calculating the
point is not reduced.

Similar calculations may be carried out for networks in which
only the distances to the AES are measured. The values of v1/p
for this case are presented in Table 4.

It 1s obvious from Table 4 that the effect of the shape of
the network is more strongly manifested for networks, constructed
only by measured distances to the AES. In this case two sides,
intersecting at "good" angles, are required as a minimum.
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TABLE 4

a Number of directions, forming small Déigggigﬁ:egre
angles at a given point _uniformly
[N = 6 N-1=25 N-2=14
- 15° 3.12 | 2.53 1.80 1.65
10° .70 , 3.60 1.95 1.65

To increase accuracy, preference should be given to networks
in which all three elements are measured. However, this will
hardly be the best engineering solution of the problem. Let us
i1llustrate thls position by an example. Let N directions be /196
measured at some point, and let the distances also be measured
by t directions. Then (35.30) assumes the form
t+ [V —1)— 3 ¢t]
M= — = /[1' ;
llPV p'p“ R t+[(-N_‘t)__Eq2J X
1 R}
Xl (N—n ]*t+yw—n—2nﬂ +t+UN—Qonﬂ'

(39.15)

or with uniform distribution of the lines with respect to the

coordinate axes

ﬁ&—up]/f

8. o1
1 R iy (39.16)
t+~w—n [t+5w—n]

The reciprocal weights of the errors in the position, cal-
culated by Formula (39.16) and for different values of t (in
this case N 1s assumed equal to 6), are presented in Table 5.

It is obvious from Table 5 that, 1f a single distance
(t = 1) is measured from each ground point, the accuracy of
calculating the points is increased by a total of 6%, of two
points — by 13%, and finally, if the distances at the points are
measured by all directions, an increase of accuracy by 24% may
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t t =20 t =1 't =2 t =N

Vl7pj 1.00 0.94 0.87 0.76

Thus, measurement of the differences by all lines of the
space geodetic network, by considerably increasing the total
number of operations, lncreases accuracy by only 1.2 times.
Therefore, the main role of linear measurements should be not so
much In increasing accuracy, as in representing and conserving
the scale for the entire network. In connection with this, no
attempt should be made to measure all lines, but only part of
them, distributing them uniformly over all sections of the
network.

The problem of the optimum number of measured sides and
their distribution requires additional investigations. But since
the errors in the measurements are localized in the section con-
sisting of six to eight series of points, we méy assume in the
first approximation that the effect of linear measurements on
determining the scale of a given section of the network will be
approximately within these limits. Therefore, it 1s recommended
that points for which distances are measured be arranged along
six to elght sides of space triangulation.

At the same time, it 1s necessary to note that measurement /197
of the differences 1is of great importance at those positions
where, for some reason or other, the network has an unsatisfactory
geometric shape. A radical increase in the accuracy of space tri-
angulation 1in such sections may be achieved by an optimum combi-

nation of angular and linear measurements.
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40. Calculation of the Optimum Characteristics
of Space Triangulation Design

Space triangulation design should contain a number of
characteristics, necessary for its implementation, which may be
divided into three groups.

The first group comprises the indicators of accuracy:

1 — measurement errors (mB, m,s mAp),
2 — errors in calculating the triangulation elements (mB, mD),
3 — errors in the position of triangulation points (MJ) or

relative errors in their common position (v);
The second group will contain the geometric indicators:

— the distances between ground points (D),
— the orbital parameters of the AES (i, H),

the distances to the AES (p),

~ O U =

— the angles between the directions, planes, and chords
(P, X, ¥),
8 — the elevation of the AES above the level of the obser-

vation points (a);
The third group may include quantitative characteristics:

9 — the number of AES positions or directions from the
observation point, or the number of synchronization planes required
to obtain the result (n),
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10 — the number of observed AES (s),

11 — the frequency of the AES passing through the zone of.
common visibility from the observation points (f),

12 ~— the duration of total observation time (T).

Under different conditions for solution of the design problem,
some characteristics will be given before, and others will be
determined during, the design.

The most common case is a design based on the overall purposé
for space triangulation, when only the average distance between |
the points and the accuracy of their calculation will be given.
The design should then be determined from all remaining charac-
teristics, up to selection of the observation equipment,’providing
the required accuracy of observations. '

A design based on representation of the first, third, fourth,
fifth, tenth, eleventh and twelfth characteristics will be the
most practical. In this case, the agreement of the results of
triangulation accuracy, provided by the design, and the time
required for 1its creation should be checked.

The narrowest problem will be a priori calculation of the ngﬁ
accuracy of the position of the points in the network, when all
characteristics, besides the third one, are given. The calcula-
tlons here reduce to sequential use of the formulas for estimating
the accuracy of the position of the polnts. Numerical inversion
of the matrices of normal equations on an electronic computer may

also be used for a more rigorous evaluation of the design.

To illustrate the latter problem, let us analyze one of the
deslgns of a worldwide space triangulation network, proposed by
the Soviet scientist, I. D. Zhongolovich [18].
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The basic l1dea of this deslign conslists in constructing a
closed three-dimensional network of space triangulation triangles
around the Earth, whose chords form a rectilinear polygon — an
icosahedron. The design has the following technical characteris-
tics: space triangulation is constructed by the method of chords,
the number of calculated points is 12, and the number of chords,
convergent at each ground point, is identical and equal to 5, the
chord lengths D = 6700 km, the satellite altitude H = 12,300 km;
the average dlstance between the ground points and the AES is
p = 14,000 km, which will correspond to the angle of intersection
for a satellite of ¢ = 28°,

The author of the design assumes that, with a sufficient
number of intersecting planes (synchronization planes), we can
achieve an accuracy in calculating the spherical coordinates of

the chords in the space network of about 1", i.e., m$ =m, cos @ =

1", For these conditions, the error in the direction of the
chord comprises mg = 1.4",

Let us first calculate which number of synchronization planes
should be obtained to achieve such accuracy. From Formula (37.11)
we will have

m2203

(n __.. 1)z —s et SR
(40.1)

Assuming that mg = 1", mg = 1.4", (sin? xcp = 0.3, D = 6700, p =

14,000) we obtain n = 16,

Let us now estimate the errors of the points of the first.
series of the network shown in Figure 54 (points 2, 3, 4, 5, 6).
The errors 1ln the position of points in the networks with meas-
ured directions to the AES are calculated by Formula (35.31).
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The latter may be simplified, if we assume that the measured
directions are uniformly distributed wlth respect to the coordin-
ate axes. Then X ~3m? r:En‘zf’v‘Zqz:N/s , and Formula (35.31)
‘assumes the form

MI=FPV"QQT(1+73'>T ’ (’40.2)

When the chords are equated in the network, the formula for the
error in the position is the following:

M_F”‘BDV??V(H'?ZF)' (40.3)

The value of the error, calculated by Formula (40.3) will be /199
identical for all points and will be

L A5:0700000 4 1o
;== 206?‘2_65_‘_'1’1“’_52 M.

When deriving Formula (40.3), the errors in the coordinates
are assumed equal to Mx = M = MZ = 30 m.

3 Y%

Professor I. D. Zhongolovich reduces the errors in the
coordinates of the same points, obtalined as a result of adjusting
the network model (Table 6), which corresponds to its design.

TABLE 6

No. of - S—
pOint ij. M M-'/j’ M sz, M JII':VMEI = 1\113’. + M;i, »

2 - 30 25 26 47

3 24 42 30 57

4 44 34 32 64

5 44 34 32 64

6 24 : 42 . 30 Y §
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The data given in Table 6 indicate that the assumption about
the uniform distribution of chords with respect to the coordinate
axes, on the basis of which Formula (40.3) was obtained, is ful-
filled only partially in the given case. This circumstance and
the calculated approximation of the expressions of the weight
coefficients led to the fact that an a priori estimation by this
formula and an a posteriori estimation (from the results of adjust-
ment) were somewhat different. However, the difference in the
estimates comprises only 17% — a value which may not be considered
high.

The second basic problem of the triangulation design, essen-
tially the reverse of that considered — calculation of the optimum
characteristics of the design according to the given accuracy —
i1s more complicated. Let us consider the more interesting ver-
sion of this problem in the practical sense in the example of a
space triangulation network, constructed from the chord directions.

1. The density and required accuracy of calculating the
points, which are determined by the purpose of the given network,
are assumed to be known. The mean square error in calculating

the direction to the AES m8 is also known. Since density may

always be expréssed by thé average length of the sides between
the ground points D and the accuracy of the network may be char-
acterized by the relative error in the common position of two
adjacent points v, we will assume the values D, v, and mg to be

known.

The required accuracy of calculating the chords, the number
of synchronization planes, the maximum distances to the AES and
the value of the semimajor axls of the orbit (in the first
approximation — the radius of a circular orbit) should be found
from these data.
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2. A second version of this problem is possible whose /200

——

initial data will be v, my, and H — the satellite altitude, i.e.,

a rather frequent situation with a satellite already selected
for observations, will be considered.

Let us calculate the main characteristics of a design using‘
the first version. Let us first establish the relationship
between the value v and the error in the position of the point

Mj in a space triangulation network, constructed by the method

of chords.*¥ The error in the common position of two adjacent

JJ

points m may be represented as

my; = 1} - 13, (40.4)

where tj are the projections of errors in the position of polnts

onto the chord connecting these points. With uniform distribu-~-
tion of the position error vector with respect to the coordinate
axes, we obtain

1} = —;-M,’-,

(40.5)
Thus
m$; M2 LM
e el (40.6)
Further assuming for a priori calculations Mj1 = sz = Mj,
we will have
/2 M
=y %
(40.7)

¥Taking into account the equivalency of the various methods
of space triangulation, the method of chords was selected only
for computational convenience.
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On the other hand, the error in the position of the point is
expressed approximately by Formula (40.3).

Let us assume that the average number of chords, convergent
at a given point N = 5. Then from Formulas (40.3) and (40.7),
we obtain

(4o.8)

Thus, the design will be accomplishéd with the given accuracy,
if the errors in the direction of the chords are subject to
Condition (40.8). Having substituted the expression for the
error in the direction of the chord in angular measurements from
Expressions (40.1) into (40.8), we obtain

v 25— P S (40.9)
DV (sini D), Vin—1) p"

The five independent parameters in Formula (40.9) make it
possible to achleve the required value of v by combining them in
different ways. By definition, we are given the average length
of chord D and the error of the topocentric direction to the AES.
At the present time, depending on the type of cameras and the
errors 1in astrometric processing of photographs, the latter varies /201
within the range of 0.7 — 2.0". The values p and n may vary
over a wide range, but the variation of their ratio is important.
From Expression (40.9), we have

P . vD V(Sl_nz A')CP "
Vi1 LZomy . (40.10)
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The optimum value of both the geometric characteristics
(p, A) and the quantitative characteristics (n) for the given
average distance between the points (D) and the accdracy of their
mutual position (v) is established on the basis of the variation
of this ratio.

Since the time of conducting the observation session T
depends on the number of measurements n, required to achieve the
given accuracy, it 1s proper to outline briefly the order of
calculating this characteristic, proposed by Lambeck [58].

The total time T 1s a function of the frequency of AES
passage through the zone of observations  and may be expressed
as

T=—,
RASREIS (40.11)

where p; 1s the probability of losses of possible observations
due to unfavorable meteorological conditions, fallures of obser-
vation equipment, interruption of observations during preliminary
processing, and non-simultaneity of observations.

The frequency of the passages every 24 hours may in turn be
represented by the expression

1440p;
f=—Ee (40.12)

where p, is the probability of finding the AES in the zone of
common visibility of the observation points; ps is the average
probability of visibility of the AES; and At is the time of

find;ng the AES in the zone of common visibility (in minutes).
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In this case pz and At depend on- the area of the zone of
common visibility (S), related to the geometric characteristics
of the network (pD) and to the altitude of the AES (H) by
Expression (37.10).

One version is possible of calculating the optimum charac-
teristics of the design, with the total observation time T being
given. 1In this case, the order of calculations will be reversed
and will include determining the maximum value of n as functions
of the given geometric characteristics D or H and the optimum
value of the zone of common visibility S, and then — calculating
the expected accuracy of the results (v) with consideration of

the given measurement accuracy (mB).

303



10.

11.

304

LITERATURE

Amelin, V. M., Methods of Using the Moon for Geodetic 202
Purposes. Byulleten' ITA, Vol. 6, No. 1(84), 1958.

Amelin, V. M. The Possibility of Establishing the Rela-
tionship between Various Triangulation Systems by AES
Observations. BSON, ISZ, No. 31, 1962.

Batrakov, Yu. V. On the Requirements for the Accuracy of
Optical Observatlions of AES for Geodesy. BSON, ISZ,
No. 55, 1969.

Bakulin, P. I. Fundamental'nyye katalogi zvezd (Fundamental
Star Catalogs). GTI, Moscow-Leningrad, 1949.

Berrot, A. and W, Hoffmann. Space Geodesy. Foreign
Languages Publishing House (IL), 1963.

Bugoslavskaya, N. Ya. Fotograficheskaya astrometriya
(Photographic Astrometry). "Nauka" Press, Moscow-
Leningrad, 1947.

Boyko, Ye. G. 1Investigation of Certain Factors which Affect
the Accuracy of Calculating Points. Izvestiya vuzov,
Geodeziya i aerofotos"yemka, No. 4, 1969.

Boyko, Ye. G. Types of Conditions which Occur in Space
Triangulation Networks. Geodeziya i kartografiya, No.
12, 1969.

Bursha, M. The Theory of Calculating the Non-Parallelism
of the Minor Axis of the Reference Ellipsoid of the Polar
Axis of the Earth's Inertia and of the Planes of the
Initial Astronomic and Geodetic Meridians from AES
Observations. Studla geoph. et geod., No. 6, 1962,

Burxha, M. Osnovy kosmicheskoy geodezil (Fundamentals of
Space Geodesy). "Nedra" Press, Moscow, 1971.

Vels, G. Geodezicheskoye ispol'zovaniye iskusstvennykh
sputnikov zemli (Geodetic Use of Artiflclal Earth
Satellites). '"Nedra" Press, 1966. -



12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Vels, G. On .the Optimum Use of Satellites for Geodesy.
Geodeziya i kartografiya, No. 3, 1966.

Deych, A. N. On the Problem of the Reduction of Photographic

Positions in an Arbitrary Optical Center. Astronomicheski
zhurnal, Vol. 49, No. 5, 1965.

Dobachevska, V. and V. Baran. Adjustment of the Experimen-
tal Central European Space Triangulation Network and
Analysis of the Results of Adjustment. Geodeziya i
kartografiya, No. 9, 1967.

Zhongolovich,I. D. Earth Satellites and Geodesy. Astro-
nomicheskiy zhurnal, Vol. 38, No. 1, 1961.

Zhongolovich, I. D. Coordinate Systems Used in Investiga-
tions of the Motion of Artificial Earth Satellites.
BSON ISZ, No. 31, 1962.

Zhongolovich, I. D. Earth Satellites and Geodesy. Astro-
nomicheskiy zhurnal, Vol. 16, No. 1, 1964.

- Zhongolovich, I. D. Design of a Single Worldwide Space

Tr%angulation Network. Stud. geoph. et geod., No. 9,
1965.

Zhongolovich, I. D. Calculation of the Earth's Center of
Mass with the Aild of Artificial Satellites. Nablyudeniya
ISZ, No. T, 196T7.

Zhongolovich, I. D. Design of the Arctic-Antarctic Geodetic
TrajJectory. BSON ISZ, No. 57, 1970.

Zagrebin, D. V. Vvedenlye v astrometriyu (Introduction to
Astrometry). "Nauka" Press, Moscow-Leningrad, 1966.

Zelinskiy, Ya. Solution of the Space Triangulation Problem
Using the Known Orbital Elements of AES. Nablyudeniya
ISZ, No. 3., 1964,

Idel'son, N. I. Reduction Calculations in Astronomy.
Astronomicheskly yezhegodnik na 1941 (Astronomical
Yearbook for 1941), Moscow-Leningrad, 1940.

Izotov, A. A. On the Theory of Calculating the Fig-
ures and Dimensions of the Earth from Observations of
Artificial Satellites. Izvestiya vuzov, Geodeziya 1
aerofotos" yemka, No. 3, 1965.

305

y

/203



25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

306

Kaula, V. M. Kosmicheskaya geodeziya (Space Geodesy).
"Nedra" Press, Moscow, 1965.

Kaula, V. M. Sputnikovaya geodeziya (Satellite Geodesy).
"Mir" Press, Moscow, 1970. ,

Kiselev, A. A., B. A. PFirago and D. Ye Shchegolev. Instruc-
tions on Calculation of AES Coordinates from Photographs
Obtained by NAFA-3c¢c/25 Cameras. BSON ISZ, No. 3(13),
1960. -

Kosmicheskiye trayektornyye izmereniya (Space Trajectory
Measurements). Eds., P. A. Agadzhanov, V. Ye. Dulevich,
and A. A. Korostelev. Sovestkoye radio, Moscow, 1969.

Krasovskiy, F. N. and V. V. Danilov. Rukovodstvo po
vysshey geodezii (Handbook on Higher Geodesy). GUGSK
NKVD, Part 1, No. 1, Moscow, 1938.

Klenitskiy, B. M. Construction of Space Triangulation from
the Directions and Lengths of Chords. BSON ISZ, No. 55,
1969.

Klenitskily, B. M. and G. A. Ustinov. On the Optimum Shapes

of Space Triangulation Figures. Geodeziya 1 kartografiya,
No. 1, 1968.

Klenitskiy, B. M. Adjustment of Three-Dimensional Space
Triangulation in a System of Rectangular Geocentric
Coordinates. Geodeziya 1 kartografiya, No. 5, 1964.

Klenitskiy, B. M. and G. A. Ustinov. Calculation of the
Equatorial Topocentric Coordinates of AES. BSON ISZ,
- No. 39, 19614 : _

Klenitskiy, B. M. and G. A. Ustinov. On the Accuracy of
Elementary Construction of Space Triangulation.
Nablyudeniya ISZ, No. 3., 1964,

Linnik, Yu. V. Metod naimen'shikh kvadratov i osnovy
matematiko -statisticheskoy teoriil obrabotkl nablyudeniy
(The Least Squares Method and the Fundamentals of Mathe-
matical-Statistical Theory of Processing Observations).
Fizmatgiz, Moscow, 1958.

Masevich, A. G. and A. M. Lozinskiy. Photographic Obser-
vations of Artificial Earth Satellites. Nauchniyye
informatsii Astrosoveta AN SSSR (Scientific Information
of the Astronomical Council of the Academy of Sciences,
USSR), Moscow, 1970.



37.

38.

39.

uo.

41.

42,

43.

by,

45.

46 .

47.

48.

LR

Muller, I. Vvedeniye v sputnikovuyu geodeziyu (Introduction

to Satellite Geodesy). "Mir" Press, Moscow, 1967.

Mikhaylov, A.

bute to Geodesy?

Nefed'yev, A.

A. What Observations of the Moon Can Contri-

A. Karty rel'yefa krayevoy zony Luny na

obshchem nulevom urovne (Relief Maps of the Marginal

Zone of the

Moon at the Common Datum Level). AOE, Kazan',

No. 30, 1958.

Podobed, V. V.
Astrometry).

Popovich, K.

of Certain Problems of Space Geodesy.

No. 3, 1964.

Geodeziya i kartografiya, No. 9, 1957.

Fundamental'naya astrometriya (Fundamental

Fizmatgiz, Moscow, 1962.

Use of the Circle of Coincidence in Solution

Pranis-Pranevich, I. Yu. Rukovodstvo po uravnitel'nym

vychisleniyam v triangulyatsii (Handbook on Adjusting

Calculations in Triangulation). Geodezizdat, Moscow,

1956.
Potter, H. I.

Vol. 35, No.

Provorov, K. L.

Nablyudeniya ISZ,

On the Problem of Using Observations of the
Moon for Geodetic Purposes. Astronomicheskiy zhurnal,

4, 1958.

O tochnostil sploshnykh setey triangulyatsii

(On the Accuracy of Continuous Triangulation Networks).

Geodezizdat,

Rézumov, 0. S.

Standartnaya zemlya (The Standard Earth). Eds., K. Lunquist

and G. Vels.

Tuzov, G. I.

Moscow, 1956.

Error Distribution in an Elementary Space
Triangulation System. Izvestiya vuzov, Geodeziya i
aerofotos"yemka, No. 6, 1967.

"Mir" Press, Moscow, 1969.

Vydeleniye i obrabotka informatsii v doppler-

ovskikh sistemakh (Data Retrieval and Processing in
Doppler Systems). Sovetskoye radio, Moscow, 1967.

Ustinov, G. A.

Adjustment of Three-Dimensional Space

Triangulation. Nablyudeniya ISZ, No. 2, 1963.

Ustinov, G. A. The Combined Method of Space Triangulation

Adjustment.

Geodeziya i1 kartografiya, No. 7, 1967.

307

/204



50. Ustinov, G. A. On the Most Advantageous Construction of
the Elementary Figures of Space Triangulation..
Geodeziya i kartografiya, No. 11, 1970.

51. Charnyy, V. I. On Isochronous Derivatives. Collection:
Iskusstvennyye sputniki Zemli, No. 16, 1963.

52. Khristov, V. D. Rasshireniya uravnivaniya po sposobu
naimen'skikh kvadratov (Expansion of Adjustment by the
Least Squares Method). Sofia, 1956.

53. Shchegolev, D. Ye., A. G. Masevich and B. G. Afanas'yev.
Simultaneous Observations of the Echo-1 AES for Geodetic
Purposes. Vestnik AN SSSR, No. 7, 1964.

54, Banchereau, A. Exploitation des mesures Doppler, faites
sur DI-C — DI-D dans un but de géodésie semi-dynamique
(Reduction of Doppler Measurements Performed on DI-C —
DI-D for Semi-Dynamic Geodesy). Paris, 1969.

55. Brosche, Nowacki and Strobel. Systematic Differences
FK-4-GC and FK-4 — N-30. Karlsruhe, 1964.

56. Hirose, H. Note on Simultaneous Observations of Artificial
Satellites for Geodetic Purposes. Space Research II.
Amsterdam, 1961.

5T7. Lambeck, K. Optimum Station-Satellite Configuration for
Simultaneous Observations to Satellites. SAO Special
Report, No. 231, 1966.

58. Lambeck, K. Scaling a Satellite Triangulation Network
with Laser Range Measurements. Stud. geoph. et geod.,
Vol. U4, 1968.

59. Lerch, C. G. Satellite Tracking with a Laser. SAO Special
Report, No. 236, 1966.

60. Lerch, C. G. and M. R. Pearlman. Laser Ranging to
Satellites. COSPAR XII'P Plenary Meeting, Prague, May,
1969.

61. Markowitz, W. Use in Geodesy of the Results of Lunar
Observations and Eventual Satellites. Bull. géod.,
No. 49, 1958.

62. Newton, R. R. Caracteristiques du véhicule spatial GEOS
A. Réseau Géodésique Européen par observations de satel-
lites (Characteristics of the GEOS A Space Vehicle.
European Geodesic Network Using Satellite Observations).
Paris, 1965.

308



63.

6.
65.

66.

67.

68.

69.
70.
1.

72.
73.

T4.

75.

O'Keefe, J. A. and J. P. Anderson. The Earth's Equatorial
Radius and the Distance of the Moon. Bull. Géod., No.

29, 1953.

Ramsayer, N. Satellite Geodesy and Satellite Navigation.
Zzfv., No. T, 1966.

Reduction of Satellite Photographic Plates. J. Kovalevsky
and G. Vels, eds. COSPAR Transactions, No. 7, Paris, 1970.

Rimer, K., K. Killian and P. Meiss. Beitrage zur Theorie
der geometrische Netz in Raum (Contribution to the Theory
of Spatial Geometric Networks). Munich, 1969.

Robbins. Time in Geodetic Astronomy. Surv. Rev., XIX,
1967, p. 143.

Schlesinger and Bennet. Trial of a Projection Method for
Measuring Photographs. M. N., Vol. 93, 1933, p. 382.

Scott, F. R. Estimates of the Accuracy of Positions Taken
from Photographic Star Catalogs. The Use of Artificial
Satellites for Geodesy, Vol. 1, Amsterdam, 1963.

Vaisdla and Oterma. Anwendung der astronomischen Trian
gulationsmethode (Application of the Astronomical
Triangulation Method). Helsinki, 1960.

Vonbun, F. 0. Satellite Trajectory Determinations and
Their Expected Errors. COSPAR xI1Ith Plenary Meeting.
Prague, May, 1969.

Velis, G. On the Optimum Use of Satellites for Geodesy.
Bull. géod., No. T4, 1964.

Veis, G. Geodetic Uses of Artificial Satellites. Smith-
sonian Contr. to Astrophys., Vol. 3, No. 9, 1960.

Veis, G. The Precision Optical Satellite Tracking Net of
SAO. The Use of Artificial Satellites for Geodesy, Vol.
I, Amsterdam, 1963.

Whitford, Angular Diameters of Stars from Osculations by
the Moon. Astr. J., Vol. 52, 1947.

309

#U.S. GOVERNMENT PRINTING OFFICE: 1973-739-028/38





